A Construction for Boolean Cube Ramsey Numbers

被引:0
|
作者
Tom Bohman
Fei Peng
机构
[1] Carnegie Mellon University,Department of Mathematics
[2] National University of Singapore,Department of Mathematics
来源
Order | 2023年 / 40卷
关键词
Poset Ramsey; Construction;
D O I
暂无
中图分类号
学科分类号
摘要
Let Qn be the poset that consists of all subsets of a fixed n-element set, ordered by set inclusion. The poset cube Ramsey number R(Qn,Qn) is defined as the least m such that any 2-coloring of the elements of Qm admits a monochromatic copy of Qn. The trivial lower bound R(Qn,Qn) ≥ 2n was improved by Cox and Stolee, who showed R(Qn,Qn) ≥ 2n + 1 for 3 ≤ n ≤ 8 and n ≥ 13 using a probabilistic existence proof. In this paper, we provide an explicit construction that establishes R(Qn,Qn) ≥ 2n + 1 for all n ≥ 3. The best known upper bound, due to Lu and Thompson, is R(Qn,Qn) ≤ n2 − 2n + 2.
引用
收藏
页码:327 / 333
页数:6
相关论文
共 50 条
  • [1] A Construction for Boolean Cube Ramsey Numbers
    Bohman, Tom
    Peng, Fei
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2023, 40 (02): : 327 - 333
  • [2] Cube Ramsey numbers are polynomial
    Shi, LS
    RANDOM STRUCTURES & ALGORITHMS, 2001, 19 (02) : 99 - 101
  • [3] Ramsey numbers of Boolean lattices
    Grosz, Daniel
    Methuku, Abhishek
    Tompkins, Casey
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (02) : 914 - 932
  • [4] Poset Ramsey Numbers for Boolean Lattices
    Linyuan Lu
    Joshua C. Thompson
    Order, 2022, 39 : 171 - 185
  • [5] Poset Ramsey Numbers for Boolean Lattices
    Lu, Linyuan
    Thompson, Joshua C.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2022, 39 (02): : 171 - 185
  • [6] A construction for Ramsey numbers for Km, n
    Dung, Lin
    Li, Yusheng
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (07) : 1667 - 1670
  • [7] Poset Ramsey numbers: large Boolean lattice versus a fixed poset
    Axenovich, Maria
    Winter, Christian
    COMBINATORICS PROBABILITY & COMPUTING, 2023, 32 (04): : 638 - 653
  • [8] On the Ramsey number of the triangle and the cube
    Griffiths, Simon
    Morris, Robert
    Pontiveros, Gonzalo Fiz
    Saxton, David
    Skokan, Jozef
    COMBINATORICA, 2016, 36 (01) : 71 - 89
  • [9] On the Ramsey number of the triangle and the cube
    Gonzalo Fiz Pontiveros
    Simon Griffiths
    Robert Morris
    David Saxton
    Jozef Skokan
    Combinatorica, 2016, 36 : 71 - 89
  • [10] EMBEDDINGS ON A BOOLEAN CUBE
    ZUBAIR, M
    GUPTA, SN
    BIT, 1990, 30 (02): : 245 - 256