Dynamics of threshold network on non-trivial distribution degree

被引:0
|
作者
I. Nakamura
机构
[1] Sony Corporation,
关键词
Distribution Degree; Thermal Noise; Chaotic State; Interaction Rule; Average Connectivity;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamics of a threshold network (TN) with thermal noise on scale-free, random-graph, and small-world topologies are considered herein. The present analytical study clarifies that there is no phase transition independent of network structure if temperature T = 0, threshold h = 0 and the probability distribution degree P(k) satisfies P(0) = D = 0. The emergence of phase transition involving three parameters, T, h and D is also investigated. We find that a TN with moderate thermal noise extends the regime of ordered dynamics, compared to a TN in the T = 0 regime or a Random Boolean Network (RBN). A TN can be continuously reduced to an expression of RBN in the infinite T limit.
引用
收藏
页码:217 / 221
页数:4
相关论文
共 50 条
  • [1] Dynamics of threshold network on non-trivial distribution degree
    Nakamura, I
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2004, 40 (02): : 217 - 221
  • [2] On the non-trivial dynamics of complex networks
    Bianconi, G
    Marsili, M
    Vega-Redondo, F
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 346 (1-2) : 116 - 122
  • [3] Detecting non-trivial computation in complex dynamics
    Lizier, Joseph T.
    Prokopenko, Mikhail
    Zomaya, Albert Y.
    [J]. ADVANCES IN ARTIFICIAL LIFE, PROCEEDINGS, 2007, 4648 : 895 - +
  • [4] Trivial and non-trivial superconductivity in dsDNA
    Simchi, H.
    [J]. PHYSICS LETTERS A, 2018, 382 (35) : 2489 - 2492
  • [5] Simulating Phase Transition Dynamics on Non-trivial Domains
    Bolikowski, Lukasz
    Gokieli, Maria
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2013), PT II, 2014, 8385 : 510 - 519
  • [6] The simplest non-trivial model of chaotic causal dynamics
    Makowski, AJ
    Frackowiak, M
    [J]. ACTA PHYSICA POLONICA B, 2001, 32 (10): : 2831 - 2842
  • [7] In Pursuit of the Non-Trivial
    Caret, Colin R.
    [J]. EPISTEME-A JOURNAL OF INDIVIDUAL AND SOCIAL EPISTEMOLOGY, 2021, 18 (02): : 282 - 297
  • [8] A non-trivial junction
    Benjamin Heinrich
    [J]. Nature Nanotechnology, 2018, 13 : 874 - 874
  • [9] NON-TRIVIAL PURSUITS
    CANBY, ET
    [J]. AUDIO, 1985, 69 (03): : 20 - &
  • [10] Tending to the Non-Trivial
    Kordes, Urban
    [J]. PRIMERJALNA KNJIZEVNOST, 2012, 35 (02): : 179 - 191