Wavelet Domain Generative Adversarial Network for Multi-scale Face Hallucination

被引:2
|
作者
Huaibo Huang
Ran He
Zhenan Sun
Tieniu Tan
机构
[1] University of Chinese Academy of Sciences,School of Artificial Intelligence
[2] CASIA,Center for Research on Intelligent Perception and Computing
[3] CASIA,National Laboratory of Pattern Recognition
[4] CAS,Center for Excellence in Brain Science and Intelligence Technology
来源
关键词
Face hallucination; Super-resolution; Wavelet transform; Generative adversarial network; Face recognition;
D O I
暂无
中图分类号
学科分类号
摘要
Most modern face hallucination methods resort to convolutional neural networks (CNN) to infer high-resolution (HR) face images. However, when dealing with very low-resolution (LR) images, these CNN based methods tend to produce over-smoothed outputs. To address this challenge, this paper proposes a wavelet-domain generative adversarial method that can ultra-resolve a very low-resolution (like 16×16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$16\times 16$$\end{document} or even 8×8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\times 8$$\end{document}) face image to its larger version of multiple upscaling factors (2×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times $$\end{document} to 16×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$16\times $$\end{document}) in a unified framework. Different from the most existing studies that hallucinate faces in image pixel domain, our method firstly learns to predict the wavelet information of HR face images from its corresponding LR inputs before image-level super-resolution. To capture both global topology information and local texture details of human faces, a flexible and extensible generative adversarial network is designed with three types of losses: (1) wavelet reconstruction loss aims to push wavelets closer with the ground-truth; (2) wavelet adversarial loss aims to generate realistic wavelets; (3) identity preserving loss aims to help identity information recovery. Extensive experiments demonstrate that the presented approach not only achieves more appealing results both quantitatively and qualitatively than state-of-the-art face hallucination methods, but also can significantly improve identification accuracy for low-resolution face images captured in the wild.
引用
收藏
页码:763 / 784
页数:21
相关论文
共 50 条
  • [1] Wavelet Domain Generative Adversarial Network for Multi-scale Face Hallucination
    Huang, Huaibo
    He, Ran
    Sun, Zhenan
    Tan, Tieniu
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2019, 127 (6-7) : 763 - 784
  • [2] A MULTI-SCALE CONDITIONAL GENERATIVE ADVERSARIAL NETWORK FOR FACE SKETCH SYNTHESIS
    Bi, Hongbo
    Li, Ning
    Guan, Huaping
    Lu, Di
    Yang, Lina
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3876 - 3880
  • [3] Multi-Scale Feature Channel Attention Generative Adversarial Network for Face Sketch Synthesis
    Zheng, Jieying
    Wu, Yahong
    Song, Wanru
    Xu, Ran
    Liu, Feng
    IEEE ACCESS, 2020, 8 : 146754 - 146769
  • [4] Multi-scale conditional reconstruction generative adversarial network
    Chen, Yanming
    Xu, Jiahao
    An, Zhulin
    Zhuang, Fuzhen
    IMAGE AND VISION COMPUTING, 2024, 141
  • [5] Face hallucination based on edge enhanced generative adversarial network
    Lu T.
    Chen C.
    Xu R.
    Zhang Y.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48 (01): : 87 - 92
  • [6] Multi-scale Generative Adversarial Deblurring Network with Gradient Guidance
    Zhu, Jinxiu
    Xu, Xue
    Choi, Chang
    Su, Xin
    JOURNAL OF INTERNET TECHNOLOGY, 2023, 24 (02): : 243 - 255
  • [7] Multi-scale capsule generative adversarial network for snow removal
    Yang, Fei
    Zhang, Jialu
    Zhang, Qian
    IET COMPUTER VISION, 2021, 15 (07) : 474 - 486
  • [8] Contourlet Transform based Multi-scale Fusion Network for Face Hallucination
    Wei, W.
    Feng, G. Q.
    Cui, D. L.
    2019 3RD INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS AND DIGITAL IMAGE PROCESSING (CGDIP 2019), 2019, 1335
  • [9] PARSING MAP GUIDED MULTI-SCALE ATTENTION NETWORK FOR FACE HALLUCINATION
    Wang, Chenyang
    Zhong, Zhiwei
    Jiang, Junjun
    Zhai, Deming
    Liu, Xianming
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2518 - 2522
  • [10] Multi-scale generative adversarial network for image super-resolution
    Daihong, Jiang
    Sai, Zhang
    Lei, Dai
    Yueming, Dai
    SOFT COMPUTING, 2022, 26 (08) : 3631 - 3641