From recollement of triangulated categories to recollement of abelian categories

被引:0
|
作者
YaNan Lin
MinXiong Wang
机构
[1] Xiamen University,School of Mathematical Sciences
[2] Huaqiao University,School of Mathematical Sciences
来源
Science China Mathematics | 2010年 / 53卷
关键词
triangulated category; abelian category; recollement; tilting subcategory; quotient category; 16G20; 16G70; 19S99; 17B20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that if a triangulated category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document} admits a recollement relative to triangulated categories \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D}' $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D}'' $$\end{document}, then the abelian category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D}/\mathcal{T} $$\end{document} admits a recollement relative to abelian categories \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D}'/i*(\mathcal{T}) $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D}''/j*(\mathcal{T}) $$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} is a cluster tilting subcategory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document} and satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ i_* i^* (\mathcal{T}) \subset \mathcal{T},j_* j^* (\mathcal{T}) \subset \mathcal{T} $$\end{document}.
引用
收藏
页码:1111 / 1116
页数:5
相关论文
共 50 条
  • [1] From recollement of triangulated categories to recollement of abelian categories
    Lin YaNan
    Wang MinXiong
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (04) : 1111 - 1116
  • [2] From recollement of triangulated categories to recollement of abelian categories
    LIN YaNan 1 & WANG MinXiong 1
    2 School of Mathematical Sciences
    Science China(Mathematics), 2010, 53 (04) : 1111 - 1116
  • [3] Parametrizing recollement data for triangulated categories
    Nicolas, Pedro
    Saorin, Manuel
    JOURNAL OF ALGEBRA, 2009, 322 (04) : 1220 - 1250
  • [4] COTORSION PAIRS IN A RECOLLEMENT OF TRIANGULATED CATEGORIES
    Chen, Jianmin
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (08) : 2903 - 2915
  • [5] THE RESOLUTION DIMENSIONS WITH RESPECT TO BALANCED PAIRS IN THE RECOLLEMENT OF ABELIAN CATEGORIES
    Fu, Xuerong
    Hu, Yonggang
    Yao, Hailou
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 1031 - 1048
  • [6] Recollement of Colimit Categories and Its Applications
    Ju Huang
    Qinghua Chen
    Chunhuan Lai
    Czechoslovak Mathematical Journal, 2020, 70 : 1147 - 1160
  • [7] Recollement of Colimit Categories and Its Applications
    Huang, Ju
    Chen, Qinghua
    Lai, Chunhuan
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (04) : 1147 - 1160
  • [8] A recollement construction of Gorenstein derived categories
    Peng Yu
    Frontiers of Mathematics in China, 2018, 13 : 691 - 713
  • [9] A recollement construction of Gorenstein derived categories
    Yu, Peng
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (03) : 691 - 713
  • [10] Recollement of Grothendieck categories. Applications to schemes
    Joita, D.
    Nastasescu, C.
    Nastasescu, L.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (01): : 109 - 116