A primal-dual algorithm for the minimum partial set multi-cover problem

被引:0
|
作者
Yingli Ran
Yishuo Shi
Changbing Tang
Zhao Zhang
机构
[1] Zhejiang Normal University,College of Mathematics and Computer Science
[2] Institute of Information Science,undefined
[3] Academia Sinica,undefined
来源
关键词
Partial set multi-cover problem; Positive influence dominating set; Densest ; -subgraph problem; Primal-dual; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In a minimum partial set multi-cover problem (MinPSMC), given an element set E, a collection of subsets S⊆2E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}} \subseteq 2^E$$\end{document}, a cost wS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_S$$\end{document} on each set S∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\in {\mathcal {S}}$$\end{document}, a covering requirement re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_e$$\end{document} for each element e∈E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E$$\end{document}, and an integer k, the goal is to find a sub-collection F⊆S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}} \subseteq {\mathcal {S}}$$\end{document} to fully cover at least k elements such that the cost of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} is as small as possible, where element e is fully covered by F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} if it belongs to at least re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_e$$\end{document} sets of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document}. On the application side, the problem has its background in the seed selection problem in a social network. On the theoretical side, it is a natural combination of the minimum partial (single) set cover problem (MinPSC) and the minimum set multi-cover problem (MinSMC). Although both MinPSC and MinSMC admit good approximations whose performance ratios match those lower bounds for the classic set cover problem, previous studies show that theoretical study on MinPSMC is quite challenging. In this paper, we prove that MinPSMC cannot be approximated within factor O(n12(loglogn)c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^\frac{1}{2(\log \log n)^c})$$\end{document} for some constant c under the ETH assumption. Furthermore, assuming rmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max }$$\end{document} is a constant, where rmax=maxe∈Ere\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max } =\max _{e\in E} r_e$$\end{document} is the maximum covering requirement and f is the maximum number of sets containing a common element, we present a primal-dual algorithm for MinPSMC and show that its performance ratio is O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n})$$\end{document}. We also improve the ratio for a restricted version of MinPSMC which possesses a graph-type structure.
引用
收藏
页码:725 / 746
页数:21
相关论文
共 50 条
  • [1] A primal-dual algorithm for the minimum partial set multi-cover problem
    Ran, Yingli
    Shi, Yishuo
    Tang, Changbing
    Zhang, Zhao
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (03) : 725 - 746
  • [2] A Primal-Dual Randomized Algorithm for the Online Weighted Set Multi-cover Problem
    Chen, Wenbin
    Li, Fufang
    Qi, Ke
    Liu, Miao
    Tang, Maobin
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2020, 2020, 12337 : 60 - 68
  • [3] Primal Dual Algorithm for Partial Set Multi-cover
    Ran, Yingli
    Shi, Yishuo
    Zhang, Zhao
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2018), 2018, 11346 : 372 - 385
  • [4] A primal-dual algorithm for the minimum power partial cover problem
    Menghong Li
    Yingli Ran
    Zhao Zhang
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 1913 - 1923
  • [5] A primal-dual algorithm for the minimum power partial cover problem
    Li, Menghong
    Ran, Yingli
    Zhang, Zhao
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (03) : 1913 - 1923
  • [6] A bicriteria algorithm for the minimum submodular cost partial set multi-cover problem
    Shi, Yishuo
    Ran, Yingli
    Zhang, Zhao
    Du, Ding-Zhu
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 803 : 1 - 9
  • [7] Approximation algorithm for the partial set multi-cover problem
    Shi, Yishuo
    Ran, Yingli
    Zhang, Zhao
    Willson, James
    Tong, Guangmo
    Du, Ding-Zhu
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 75 (04) : 1133 - 1146
  • [8] Approximation algorithm for the partial set multi-cover problem
    Yishuo Shi
    Yingli Ran
    Zhao Zhang
    James Willson
    Guangmo Tong
    Ding-Zhu Du
    [J]. Journal of Global Optimization, 2019, 75 : 1133 - 1146
  • [9] A primal-dual approximation algorithm for the k-prize-collecting minimum power cover problem
    Liu, Xiaofei
    Li, Weidong
    Xie, Runtao
    [J]. OPTIMIZATION LETTERS, 2022, 16 (08) : 2373 - 2385
  • [10] A primal-dual approximation algorithm for the k-prize-collecting minimum power cover problem
    Xiaofei Liu
    Weidong Li
    Runtao Xie
    [J]. Optimization Letters, 2022, 16 : 2373 - 2385