Bounds-constrained polynomial approximation using the Bernstein basis

被引:0
|
作者
Larry Allen
Robert C. Kirby
机构
[1] Baylor University,Department of Mathematics
来源
Numerische Mathematik | 2022年 / 152卷
关键词
41A20; 41A29; 65D15; 65K05; 90C20;
D O I
暂无
中图分类号
学科分类号
摘要
A fundamental problem in numerical analysis and approximation theory is approximating smooth functions by polynomials. A much harder version under recent consideration is to enforce bounds constraints on the approximating polynomial. In this paper, we consider the problem of constructioning such approximations using polynomials in the Bernstein basis. We consider a family of inequality-constrained quadratic programs. In the univariate case, a quadratic cone constraint allows us to search over all nonnegative polynomials of a given degree. In both the univariate and multivariate cases, we consider approximate problems with linear inequality constraints. Additionally, our method can be modified slightly to include equality constraints such as mass preservation.
引用
收藏
页码:101 / 126
页数:25
相关论文
共 50 条
  • [1] Bounds-constrained polynomial approximation using the Bernstein basis
    Allen, Larry
    Kirby, Robert C.
    [J]. NUMERISCHE MATHEMATIK, 2022, 152 (01) : 101 - 126
  • [2] Approximation by the modified λ-Bernstein-polynomial in terms of basis function
    Ayman-Mursaleen, Mohammad
    Nasiruzzaman, Md.
    Rao, Nadeem
    Dilshad, Mohammad
    Nisar, Kottakkaran Sooppy
    [J]. AIMS MATHEMATICS, 2024, 9 (02): : 4409 - 4426
  • [3] Accurate polynomial interpolation by using the Bernstein basis
    Ana Marco
    José-Javier Martínez
    Raquel Viana
    [J]. Numerical Algorithms, 2017, 75 : 655 - 674
  • [4] Accurate polynomial interpolation by using the Bernstein basis
    Marco, Ana
    Martinez, Jose-Javier
    Viana, Raquel
    [J]. NUMERICAL ALGORITHMS, 2017, 75 (03) : 655 - 674
  • [5] Approximation of Bernstein Interpolation Polynomial
    Xu Chunning (The Adult Education College of Changchun Post & Telecommunication Institute
    [J]. The Journal of China Universities of Posts and Telecommunications, 1997, (02) : 76 - 80
  • [6] On the Bernstein constants of polynomial approximation
    Lubinsky, D. S.
    [J]. CONSTRUCTIVE APPROXIMATION, 2007, 25 (03) : 303 - 366
  • [7] POLYNOMIAL APPROXIMATION AND BERNSTEIN INEQUALITIES
    BAOUENDI, MS
    GOULAOUI.C
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 275 (20): : 967 - &
  • [8] On the Bernstein Constants of Polynomial Approximation
    D.S. Lubinsky
    [J]. Constructive Approximation, 2007, 25 : 303 - 366
  • [9] BEST POLYNOMIAL-APPROXIMATION AND BERNSTEIN POLYNOMIAL-APPROXIMATION ON A SIMPLEX
    DITZIAN, Z
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1989, 92 (03): : 243 - 256
  • [10] Upper bounds for Bernstein basis functions
    Gupta, Vijay
    Shervashidze, Tengiz
    [J]. Springer Proceedings in Mathematics and Statistics, 2013, 33 : 293 - 301