Advanced Geometric Mean Model for Predicting Thermal Conductivity of Unsaturated Soils

被引:0
|
作者
Vlodek R. Tarnawski
Wey H. Leong
机构
[1] Saint Mary’s University,Division of Engineering
[2] Ryerson University,Department of Mechanical and Industrial Engineering
来源
关键词
Geometric mean model; Modeling; Thermal conductivity; Unsaturated soils;
D O I
暂无
中图分类号
学科分类号
摘要
An advanced geometric mean model for predicting the effective thermal conductivity (λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) of unsaturated soils has been developed and successfully verified against an experimental λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} database consisting of 40 Canadian soils, 15 American soils, 10 Chinese soils, four Japanese soils, three standard sands, and one pyroclasticsoil (Pozzolana) from Italy (a total of 667 experimental λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} entries). Three soil structure-based parameters were used in the model, namely an inter-particle thermal contact resistance factor (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}), the degree of saturation of a miniscule pore space (sr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(s_{\mathrm{r}})$$\end{document}, and the bulk thermal conductivity of soil solids (λs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda _{\mathrm{s}})$$\end{document}. The α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} factor strongly depended on the ratio of λs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\mathrm{s}}$$\end{document} to λf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\mathrm{f}}$$\end{document} (where λf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\mathrm{f}}$$\end{document} is the thermal conductivity of interfacial fluid) and an inter-particle contact coefficient (ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}) whose value was obtained by reverse modeling of experimental λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} data of 40 Canadian soils; the average values of ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} varied between 0.988 and 0.994 for coarse and fine soils, respectively. In general, ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} depends on soil compaction, soil specific surface area, and grain size distribution. The use of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} was essential for close λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} estimates of experimental data at a low range of degree of saturation (Sr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S_{\mathrm{r}})$$\end{document}. For λs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\mathrm{s}}$$\end{document} estimates obtained from measured λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} at soil saturation or a complete soil mineral composition data or experimental quartz content, 69 % of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} predictions were less than 0.08W·m-1·K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.08\, \hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}$$\end{document}, 15 % were between 0.08W·m-1·K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.08\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}$$\end{document} and 0.13W·m-1·K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.13\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}$$\end{document}, and 13 % were between 0.13W·m-1·K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.13\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}$$\end{document} and 0.24W·m-1·K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.24\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}$$\end{document} with respect to experimental data (λexp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda _{\mathrm{exp}})$$\end{document}. The model gives close λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} estimates with an average root-mean-square error (RMSE) of 0.051W·m-1·K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.051\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}$$\end{document} for 22 Canadian fine soils and an average RMSE of 0.092W·m-1·K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.092\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}$$\end{document} for 18 Canadian coarse soils. In general, better λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} estimates were obtained for soils containing less content of quartz. Overall, the model estimates were good for all soils at dry state (RMSE=0.050W·m-1·K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {RMSE} = 0.050\, \hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}$$\end{document}; 22 % of the average λexp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\mathrm{exp}}$$\end{document}), saturated state (RMSE=0.090W·m-1·K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {RMSE} = 0.090\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}$$\end{document}; 5 % of the average λexp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\mathrm{exp}}$$\end{document}), soil field capacity (RMSE=0.105W·m-1·K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {RMSE} = 0.105\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}$$\end{document}; 9 % of the average λexp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\mathrm{exp}}$$\end{document}), and satisfactory near a critical degree of saturation, Sr-cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{r-cr}}$$\end{document} (RMSE=0.162W·m-1·K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {RMSE} = 0.162\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}$$\end{document}; 26 % of the average λexp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\mathrm{exp}}$$\end{document}).
引用
收藏
相关论文
共 50 条
  • [1] Advanced Geometric Mean Model for Predicting Thermal Conductivity of Unsaturated Soils
    Tarnawski, Vlodek R.
    Leong, Wey H.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2016, 37 (02) : 1 - 42
  • [2] Unsaturated cell model of effective thermal conductivity of soils
    Zhu, Jianting
    SN APPLIED SCIENCES, 2020, 2 (08):
  • [3] Unsaturated cell model of effective thermal conductivity of soils
    Jianting Zhu
    SN Applied Sciences, 2020, 2
  • [4] A discussion of “unsaturated cell model of effective thermal conductivity of soils”
    Hans Janssen
    SN Applied Sciences, 2023, 5
  • [5] A discussion of "unsaturated cell model of effective thermal conductivity of soils"
    Janssen, Hans
    SN APPLIED SCIENCES, 2023, 5 (01):
  • [6] Study of thermal conductivity model for unsaturated unfrozen and frozen soils
    Yuan Xi-zhong
    Li Ning
    Zhao Xiu-yun
    Li Jing
    ROCK AND SOIL MECHANICS, 2010, 31 (09) : 2689 - 2694
  • [7] Study of thermal conductivity model for unsaturated unfrozen and frozen soils
    Yuan, Xi-Zhong
    Li, Ning
    Zhao, Xiu-Yun
    Li, Jing
    Yantu Lixue/Rock and Soil Mechanics, 2010, 31 (09): : 2689 - 2694
  • [8] A reliable model to predict thermal conductivity of unsaturated weathered granite soils
    Go, Gyu-Hyun
    Lee, Seung-Rae
    Kim, Young-Sang
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 74 : 82 - 90
  • [9] A Temperature-Dependent Model for Thermal Conductivity Function of Unsaturated Soils
    Toan Duc Cao
    Thota, Sannith Kumar
    Vahedifard, Farshid
    Amirlatifi, Amin
    IFCEE 2021: FROM TRADITIONAL TO EMERGING GEOTECHNICS, 2021, (325): : 89 - 98
  • [10] A Series-Parallel Model for Estimating the Thermal Conductivity of Unsaturated Soils
    Tarnawski, Vlodek R.
    Leong, Wey H.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2012, 33 (07) : 1191 - 1218