Frobenius Quasigroups and Regular Polygons

被引:0
|
作者
Iden O. [1 ]
Strambach K. [2 ]
机构
[1] Department of Mathematics, University of Bergen, Johannes Brunsgate 12, Bergen
[2] Mathematisches Institut, Universität Erlangen, Bismarckstr. 1 1/2, Erlangen
关键词
algebraic and topological quasigroups; Frobenius groups; left distributive quasigroups;
D O I
10.1007/BF03323381
中图分类号
学科分类号
摘要
In terms of regular n-gons a left distributive quasigroup operation is defined on the complex plane. This operation can be expressed by means of a semidirect product G of the translation group (which is sharply transitive on the points of the plane and hence may be identified with the plane) by a finite cyclic group of rotations of order n. That observation makes possible a wide generalization of this geometric quasigroup construction. The connection in general between algebraic properties of the quasigroup and various properties of the group G is discussed, in particular it is studied what the consequences for the quasigroup Q are if G is interpreted as a topological group or an algebraic group. © 2004, Birkhäuser Verlag, Basel.
引用
收藏
页码:254 / 273
页数:19
相关论文
共 50 条
  • [1] ON REGULAR FROBENIUS BASES
    SELMER, ES
    MATHEMATICA SCANDINAVICA, 1988, 63 (01) : 109 - 116
  • [2] ON RANKS OF REGULAR POLYGONS
    Goucha, Antonio Pedro
    Gouveia, Joao
    Silva, Pedro M.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (04) : 2612 - 2625
  • [3] Loops of regular polygons
    McLean, KR
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (06): : 500 - 510
  • [4] The construction of regular polygons
    Kommerell, K
    MATHEMATISCHE ANNALEN, 1912, 72 : 588 - 592
  • [5] Affine regular polygons
    Szabo, Sandor
    ELEMENTE DER MATHEMATIK, 2005, 60 (04) : 137 - 147
  • [6] Calibration of regular polygons
    Myskova, Katerina
    BIOMETRIC METHODS AND MODELS IN CURRENT SCIENCE AND RESEARCH, 2011, : 177 - 181
  • [7] Regular Steiner polygons
    Kaiser, MJ
    APPLIED MATHEMATICS LETTERS, 1998, 11 (06) : 43 - 47
  • [8] Note on regular polygons
    Scott, CA
    ANNALS OF MATHEMATICS, 1906, 8 : 127 - 134
  • [9] AFFINELY REGULAR POLYGONS
    COXETER, HSM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 168 - &
  • [10] SOLUTION OF REGULAR POLYGONS
    不详
    DESIGN NEWS, 1977, 33 (07) : 99 - 99