We introduce a new type of variable exponent function spaces Ḣp(·),q(·),α(·)(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^n}$$\end{document}) and Hp(·),q(·),α(·)(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^n}$$\end{document}) of Herz type, homogeneous and non-homogeneous versions, where all the three parameters are variable, and give comparison of continual and discrete approaches to their definition. Under the only assumption that the exponents p, q and α are subject to the log-decay condition at infinity, we prove that sublinear operators, satisfying the size condition known for singular integrals and bounded in Lp(·)(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^n}$$\end{document}), are also bounded in the nonhomogeneous version of the introduced spaces, which includes the case maximal and Calderón-Zygmund singular operators.