Positive Solutions for a Class of Quasilinear Schrödinger Equations with Two Parameters

被引:0
|
作者
Jianhua Chen
Qingfang Wu
Xianjiu Huang
Chuanxi Zhu
机构
[1] Nanchang University,Department of Mathematics
[2] Central South University,School of Traffic and Transportation Engineering
关键词
Quasilinear Schrödinger equation; Positive solutions; Parameters; 35J10; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following quasilinear Schrödinger equation -Δu+V(x)u+κ2Δ(u2)u=λf(u)+h(u),x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u+V(x)u+\frac{\kappa }{2}\Delta (u^2)u=\lambda f(u)+h(u),\,\, x\in {\mathbb {R}}^N, \end{aligned}$$\end{document}where λ,κ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ,\kappa >0$$\end{document}, N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document} and 2∗=2NN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*=\frac{2N}{N-2}$$\end{document}. By using a change of variable, we obtain the existence of positive solutions for this problem with subcritical nonlinearities by using the mountain pass theorem and Moser iterative method. Our results extend and supplement some other related literatures.
引用
收藏
页码:2321 / 2341
页数:20
相关论文
共 50 条
  • [1] Positive solutions for a class of quasilinear Schrödinger equations with vanishing potentials
    Xiaonan Liu
    Haibo Chen
    [J]. Boundary Value Problems, 2017
  • [2] On a class of quasilinear Schrdinger equations
    舒级
    张健
    [J]. Applied Mathematics and Mechanics(English Edition), 2007, (07) : 981 - 986
  • [3] On a class of quasilinear schrödinger equations
    Ji Shu
    Jian Zhang
    [J]. Applied Mathematics and Mechanics, 2007, 28 : 981 - 986
  • [4] Multiple positive solutions for a quasilinear system of Schrödinger equations
    Giovany M. Figueiredo
    Marcelo F. Furtado
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2008, 15 : 309 - 334
  • [5] On Numerical Solutions for a Class of Relativistic Quasilinear Schrödinger Equations
    Huang, Canwei
    Wang, Youjun
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (04)
  • [6] Positive Solutions for a Class of Quasilinear Schrodinger Equations with Two Parameters
    Chen, Jianhua
    Wu, Qingfang
    Huang, Xianjiu
    Zhu, Chuanxi
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2321 - 2341
  • [7] Solitary waves for a class of quasilinear Schrödinger equations in dimension two
    João Marcos do Ó
    Uberlandio Severo
    [J]. Calculus of Variations and Partial Differential Equations, 2010, 38 : 275 - 315
  • [8] The Existence of Arbitrary Multiple Nodal Solutions for a Class of Quasilinear Schrödinger Equations
    Wang, Kun
    Huang, Chen
    Jia, Gao
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [9] On a class of quasilinear Schrödinger equations with superlinear terms
    Cheng, Yongkuan
    Shen, Yaotian
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (05)
  • [10] On the existence of soliton solutions to quasilinear Schrödinger equations
    Markus Poppenberg
    Klaus Schmitt
    Zhi-Qiang Wang
    [J]. Calculus of Variations and Partial Differential Equations, 2002, 14 : 329 - 344