Spectral properties of flipped Toeplitz matrices and related preconditioning

被引:0
|
作者
M. Mazza
J. Pestana
机构
[1] Max Planck Institute for Plasma Physics,Division of Numerical Methods for Plasma Physics
[2] University of Strathclyde,Department of Mathematics and Statistics
来源
BIT Numerical Mathematics | 2019年 / 59卷
关键词
Toeplitz matrices; Spectral symbol; GLT theory; Hankel matrices; 15A18; 15B05; 65F08;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we investigate the spectra of “flipped” Toeplitz sequences, i.e., the asymptotic spectral behaviour of {YnTn(f)}n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{Y_nT_n(f)\}_n$$\end{document}, where Tn(f)∈Rn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n(f)\in \mathbb {R}^{n\times n}$$\end{document} is a real Toeplitz matrix generated by a function f∈L1([-π,π])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in L^1([-\pi ,\pi ])$$\end{document}, and Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_n$$\end{document} is the exchange matrix, with 1s on the main anti-diagonal. We show that the eigenvalues of YnTn(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_nT_n(f)$$\end{document} are asymptotically described by a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} matrix-valued function, whose eigenvalue functions are ±|f|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm \, |f|$$\end{document}. It turns out that roughly half of the eigenvalues of YnTn(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_nT_n(f)$$\end{document} are well approximated by a uniform sampling of |f| over [-π,π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-\,\pi ,\pi ]$$\end{document}, while the remaining are well approximated by a uniform sampling of -|f|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,|f|$$\end{document} over the same interval. When f vanishes only on a set of measure zero, this motivates that the spectrum is virtually half positive and half negative. Some insights on the spectral distribution of related preconditioned sequences are provided as well. Finally, a wide number of numerical results illustrate our theoretical findings.
引用
收藏
页码:463 / 482
页数:19
相关论文
共 50 条
  • [1] Spectral properties of flipped Toeplitz matrices and related preconditioning
    Mazza, M.
    Pestana, J.
    BIT NUMERICAL MATHEMATICS, 2019, 59 (02) : 463 - 482
  • [2] Spectral properties of flipped Toeplitz matrices and computational applications
    Barbarino, Giovanni
    Ekstrom, Sven-Erik
    Garoni, Carlo
    Meadon, David
    Serra-Capizzano, Stefano
    Vassalos, Paris
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 499
  • [3] Spectral properties of preconditioned Toeplitz matrices
    Serra, S
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1997, 11A (02): : 463 - 483
  • [4] Multigrid preconditioning and Toeplitz matrices
    Huckle, T
    Staudacher, J
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2002, 13 : 81 - 105
  • [5] CG PRECONDITIONING FOR TOEPLITZ MATRICES
    DIBENEDETTO, F
    FIORENTINO, G
    SERRA, S
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 25 (06) : 35 - 45
  • [6] PRECONDITIONING BLOCK TOEPLITZ MATRICES
    Huckle, Thomas K.
    Noutsos, Dimitrios
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 29 : 31 - 45
  • [7] Preconditioning block toeplitz matrices
    Huckle, Thomas K.
    Noutsos, Dimitrios
    Electronic Transactions on Numerical Analysis, 2007, 29 : 31 - 45
  • [8] ALGEBRAIC AND SPECTRAL PROPERTIES OF GENERAL TOEPLITZ MATRICES
    Bultheel, A.
    Carrette, P.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (05) : 1413 - 1439
  • [9] SPECTRAL PROPERTIES OF PRECONDITIONED RATIONAL TOEPLITZ MATRICES
    KU, T
    KUO, CCJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (01) : 146 - 165