Parabolic flow on metric measure spaces

被引:0
|
作者
Przemysław Górka
Anna Kurek
Enrique Lazarte
Humberto Prado
机构
[1] Warsaw University of Technology,Department of Mathematics and Information Sciences
[2] Universidad Nacional de Salta,Departamento de Matemática
[3] Universidad de Santiago de Chile,Departamento de Matemática y Ciencia de la Computación
来源
Semigroup Forum | 2014年 / 88卷
关键词
Metric measure space; Heat kernel; Parabolic equation; Regularity theory;
D O I
暂无
中图分类号
学科分类号
摘要
We present parabolic equations on metric measure spaces. We prove existence and uniqueness of solutions. Under some assumptions the existence of global in time solution is proved. Moreover, regularity and qualitative property of the solutions are shown.
引用
收藏
页码:129 / 144
页数:15
相关论文
共 50 条
  • [1] Parabolic flow on metric measure spaces
    Gorka, Przemyslaw
    Kurek, Anna
    Lazarte, Enrique
    Prado, Humberto
    SEMIGROUP FORUM, 2014, 88 (01) : 129 - 144
  • [2] Existence of parabolic minimizers to the total variation flow on metric measure spaces
    Vito Buffa
    Michael Collins
    Cintia Pacchiano Camacho
    manuscripta mathematica, 2023, 170 : 109 - 145
  • [3] Existence of parabolic minimizers to the total variation flow on metric measure spaces
    Buffa, Vito
    Collins, Michael
    Camacho, Cintia Pacchiano
    MANUSCRIPTA MATHEMATICA, 2023, 170 (1-2) : 109 - 145
  • [4] Existence of parabolic minimizers on metric measure spaces
    Collins, Michael
    Heran, Andreas
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 176 : 56 - 83
  • [5] Stability of parabolic Harnack inequalities on metric measure spaces
    Barlow, Martin T.
    Bass, Richard F.
    Kumagai, Takashi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (02) : 485 - 519
  • [6] Inhomogeneous parabolic equations on unbounded metric measure spaces
    Falconer, Kenneth J.
    Hu, Jiaxin
    Sun, Yuhua
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (05) : 1003 - 1025
  • [7] Stability for parabolic quasi minimizers in metric measure spaces
    Fujishima, Yohei
    Habermann, Jens
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (02) : 343 - 376
  • [8] ON THE HARNACK INEQUALITY FOR PARABOLIC MINIMIZERS IN METRIC MEASURE SPACES
    Marola, Niko
    Masson, Mathias
    TOHOKU MATHEMATICAL JOURNAL, 2013, 65 (04) : 569 - 589
  • [9] PARABOLIC COMPARISON PRINCIPLE AND QUASIMINIMIZERS IN METRIC MEASURE SPACES
    Kinnunen, Juha
    Masson, Mathias
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (02) : 621 - 632
  • [10] GLOBAL HIGHER INTEGRABILITY FOR PARABOLIC QUASIMINIMIZERS IN METRIC MEASURE SPACES
    Masson, Mathias
    Parviainen, Mikko
    JOURNAL D ANALYSE MATHEMATIQUE, 2015, 126 (01): : 307 - 339