共 50 条
A branch-and-price algorithm for capacitated hypergraph vertex separation
被引:0
|作者:
Michael Bastubbe
Marco E. Lübbecke
机构:
[1] Lehrstuhl für Operations Research,
[2] RWTH Aachen University,undefined
来源:
Mathematical Programming Computation
|
2020年
/
12卷
关键词:
Hypergraph;
Balanced vertex separator;
Matrix decomposition;
Integer programming;
90C27;
90C09;
49M27;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We exactly solve the NP\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {NP}}$$\end{document}-hard combinatorial optimization problem of finding a minimum cardinality vertex separator with k (or arbitrarily many) capacitated shores in a hypergraph. We present an exponential size integer programming formulation which we solve by branch-and-price. The pricing problem, an interesting optimization problem on its own, has a decomposable structure that we exploit in preprocessing. We perform an extensive computational study, in particular on hypergraphs coming from the application of re-arranging a matrix into single-bordered block-diagonal form. Our experimental results show that our proposal complements the previous exact approaches in terms of applicability for larger k, and significantly outperforms them in the case k=∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k=\infty $$\end{document}.
引用
收藏
页码:39 / 68
页数:29
相关论文