We say that a group has an MF-property if it can be embedded in the group of unitary elements of the C*-algebra ΠMn/⊕Mn. In the present paper we prove the MF-property for the Baumslag group 〈a,b|aab=a2〉\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\langle {a,b|{a^{{a^b}}} = {a^2}} \right\rangle $$\end{document} and also some general assertions concerning this property.
机构:
CNRS, Ecole Normale Super Lyon, Unite Math Pures Appl, F-69364 Lyon 07, FranceCNRS, Ecole Normale Super Lyon, Unite Math Pures Appl, F-69364 Lyon 07, France
Zuk, A
RIGIDITY IN DYNAMICS AND GEOMETRY: CONTRIBUTIONS FROM THE PROGRAMME ERGODIC THEORY, GEOMETRIC RIGIDITY AND NUMBER THEORY,
2002,
: 473
-
482