Exploring methods for mapping seasonal population changes using mobile phone data

被引:0
|
作者
D. Woods
A. Cunningham
C. E. Utazi
M. Bondarenko
L. Shengjie
G. E. Rogers
P. Koper
C. W. Ruktanonchai
E. zu Erbach-Schoenberg
A. J. Tatem
J. Steele
A. Sorichetta
机构
[1] University of Southampton,WorldPop, School of Geography and Environmental Science
[2] Virginia Tech,Population Health Sciences, College of Veterinary Medicine
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Data accurately representing the population distribution at the subnational level within countries is critical to policy and decision makers for many applications. Call data records (CDRs) have shown great promise for this, providing much higher temporal and spatial resolutions compared to traditional data sources. For CDRs to be integrated with other data and in order to effectively inform and support policy and decision making, mobile phone user must be distributed from the cell tower level into administrative units. This can be done in different ways and it is often not considered which method produces the best representation of the underlying population distribution. Using anonymised CDRs in Namibia between 2011 and 2013, four distribution methods were assessed at multiple administrative unit levels. Estimates of user density per administrative unit were ranked for each method and compared against the corresponding census-derived population densities, using Kendall’s tau-b rank tests. Seasonal and trend decomposition using Loess (STL) and multivariate clustering was subsequently used to identify patterns of seasonal user variation and investigate how different distribution methods can impact these. Results show that the accuracy of the results of each distribution method is influenced by the considered administrative unit level. While marginal differences between methods are displayed at “coarser” level 1, the use of mobile phone tower ranges provided the most accurate results for Namibia at finer levels 2 and 3. The use of STL is helpful to recognise the impact of the underlying distribution methods on further analysis, with the degree of consensus between methods decreasing as spatial scale increases. Multivariate clustering delivers valuable insights into which units share a similar seasonal user behaviour. The higher the number of prescribed clusters, the more the results obtained using different distribution methods differ. However, two major seasonal patterns were identified across all distribution methods, levels and most cluster numbers: (a) units with a 15% user decrease in August and (b) units with a 20–30% user increase in December. Both patterns are likely to be partially linked to school holidays and people going on vacation and/or visiting relatives and friends. This study highlights the need and importance of investigating CDRs in detail before conducting subsequent analysis like seasonal and trend decomposition. In particular, CDRs need to be investigated both in terms of their area and population coverage, as well as in relation to the appropriate distribution method to use based on the spatial scale of the specific application. The use of inappropriate methods can change observed seasonal patterns and impact the derived conclusions.
引用
收藏
相关论文
共 50 条
  • [1] Exploring methods for mapping seasonal population changes using mobile phone data
    Woods, D.
    Cunningham, A.
    Utazi, C. E.
    Bondarenko, M.
    Shengjie, L.
    Rogers, G. E.
    Koper, P.
    Ruktanonchai, C. W.
    Zu Erbach-Schoenberg, E.
    Tatem, A. J.
    Steele, J.
    Sorichetta, A.
    [J]. HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS, 2022, 9 (01):
  • [2] Dynamic population mapping using mobile phone data
    Deville, Pierre
    Linard, Catherine
    Martin, Samuel
    Gilbert, Marius
    Stevens, Forrest R.
    Gaughan, Andrea E.
    Blondel, Vincent D.
    Tatem, Andrew J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (45) : 15888 - 15893
  • [3] Mapping poverty using mobile phone and satellite data
    Steele, Jessica E.
    Sundsoy, Pal Roe
    Pezzulo, Carla
    Alegana, Victor A.
    Bird, Tomas J.
    Blumenstock, Joshua
    Bjelland, Johannes
    Engo-Monsen, Kenth
    de Montjoye, Yves-Alexandre
    Iqbal, Asif M.
    Hadiuzzaman, Khandakar N.
    Lu, Xin
    Wetter, Erik
    Tatem, Andrew J.
    Bengtsson, Linus
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2017, 14 (127)
  • [4] Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data
    Wesolowski, Amy
    Metcalf, C. J. E.
    Eagle, Nathan
    Kombich, Janeth
    Grenfell, Bryan T.
    Bjornstad, Ottar N.
    Lessler, Justin
    Tatem, Andrew J.
    Buckee, Caroline O.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (35) : 11114 - 11119
  • [5] Mapping cultural ecosystem services in mountain forests using mobile phone data
    Mariusz Ciesielski
    Agnieszka Kamińska
    [J]. Journal of Mountain Science, 2023, 20 : 3437 - 3449
  • [6] Mapping cultural ecosystem services in mountain forests using mobile phone data
    CIESIELSKI Mariusz
    KAMI?SKA Agnieszka
    [J]. Journal of Mountain Science, 2023, 20 (12) : 3437 - 3449
  • [7] Mapping cultural ecosystem services in mountain forests using mobile phone data
    Ciesielski, Mariusz
    Kaminska, Agnieszka
    [J]. JOURNAL OF MOUNTAIN SCIENCE, 2023, 20 (12) : 3437 - 3449
  • [8] Mapping Urban Practices Through Mobile Phone Data
    Batabyal, Amitrajeet A.
    [J]. INTERFACES, 2015, 45 (05) : 482 - 483
  • [9] Using mobile phone data to estimate dynamic population changes and improve the understanding of a pandemic: A case study in Andorra
    Berke, Alex
    Doorley, Ronan
    Alonso, Luis
    Arroyo, Vanesa
    Pons, Marc
    Larson, Kent
    [J]. PLOS ONE, 2022, 17 (04):
  • [10] Spatiotemporal Detection of Unusual Human Population Behavior Using Mobile Phone Data
    Dobra, Adrian
    Williams, Nathalie E.
    Eagle, Nathan
    [J]. PLOS ONE, 2015, 10 (03):