On two geometric realizations of an affine Hecke algebra

被引:0
|
作者
Roman Bezrukavnikov
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
[2] National Research University Higher School of Economics,International Laboratory of Representation Theory and Mathematical Physics
来源
关键词
Full Subcategory; Monoidal Category; Tensor Category; Geometric Realization; Coherent Sheave;
D O I
暂无
中图分类号
学科分类号
摘要
The article is a contribution to the local theory of geometric Langlands duality. The main result is a categorification of the isomorphism between the (extended) affine Hecke algebra associated to a reductive group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document} and Grothendieck group of equivariant coherent sheaves on Steinberg variety of Langlands dual group Gˇ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${G\check {\ }}$\end{document}; this isomorphism due to Kazhdan–Lusztig and Ginzburg is a key step in the proof of tamely ramified local Langlands conjectures.
引用
收藏
页码:1 / 67
页数:66
相关论文
共 50 条