Neuromorphic van der Waals crystals for substantial energy generation

被引:0
|
作者
Sungsoon Kim
Sangjin Choi
Hae Gon Lee
Dana Jin
Gwangmook Kim
Taehoon Kim
Joon Sang Lee
Wooyoung Shim
机构
[1] Yonsei University,Department of Materials Science and Engineering
[2] Yonsei University,Center for Multi
[3] Yonsei University,Dimensional Materials
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Controlling ion transport in nanofluidics is fundamental to water purification, bio-sensing, energy storage, energy conversion, and numerous other applications. For any of these, it is essential to design nanofluidic channels that are stable in the liquid phase and enable specific ions to pass. A human neuron is one such system, where electrical signals are transmitted by cation transport for high-speed communication related to neuromorphic computing. Here, we present a concept of neuro-inspired energy harvesting that uses confined van der Waals crystal and demonstrate a method to maximise the ion diffusion flux to generate an electromotive force. The confined nanochannel is robust in liquids as in neuron cells, enabling steady-state ion diffusion for hundred of hours and exhibiting ion selectivity of 95.8%, energy conversion efficiency of 41.4%, and power density of 5.26 W/m2. This fundamental understanding and rational design strategy can enable previously unrealisable applications of passive-type large-scale power generation.
引用
收藏
相关论文
共 50 条
  • [1] Neuromorphic van der Waals crystals for substantial energy generation
    Kim, Sungsoon
    Choi, Sangjin
    Lee, Hae Gon
    Jin, Dana
    Kim, Gwangmook
    Kim, Taehoon
    Lee, Joon Sang
    Shim, Wooyoung
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Van der Waals Colloidal Crystals
    Cho, YongDeok
    Park, Sung Hun
    Kwon, Min
    Kim, Hyeon Ho
    Huh, Ji-Hyeok
    Lee, Seungwoo
    [J]. ADVANCED MATERIALS, 2024, 36 (23)
  • [3] Laser Tuning in van der Waals Crystals
    Zheng, Wei
    Li, Fadi
    Li, Guo
    Liang, Yufeng
    Ji, Xu
    Yang, Fan
    Zhang, Zhaojun
    Huang, Feng
    [J]. ACS NANO, 2018, 12 (02) : 2001 - 2007
  • [4] Colloidal crystals: A van der Waals approach
    Baus, M
    Coussaert, T
    Achrayah, R
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1996, 232 (3-4) : 575 - 584
  • [5] Image polaritons in van der Waals crystals
    Menabde, Sergey G.
    Heiden, Jacob T.
    Cox, Joel D.
    Mortensen, N. Asger
    Jang, Min Seok
    [J]. NANOPHOTONICS, 2022, 11 (11) : 2433 - 2452
  • [6] MANY-ELECTRON CONTRIBUTION TO COHESIVE ENERGY IN VAN DER WAALS CRYSTALS
    DONIACH, S
    [J]. PHILOSOPHICAL MAGAZINE, 1963, 8 (85): : 129 - &
  • [7] Hyperspectral Nanoimaging of van der Waals Polaritonic Crystals
    Alfaro-Mozaz, F. J.
    Rodrigo, S. G.
    Velez, S.
    Dolado, I
    Govyadinov, A.
    Alonso-Gonzalez, P.
    Casanova, F.
    Hueso, L. E.
    Martin-Moreno, L.
    Hillenbrand, R.
    Nikitin, A. Y.
    [J]. NANO LETTERS, 2021, 21 (17) : 7109 - 7115
  • [8] VAN DER WAALS INTERACTION AND PACKING OF MOLECULAR CRYSTALS
    GIGLIO, E
    LIQUORI, AM
    [J]. ACTA CRYSTALLOGRAPHICA, 1967, 22 : 437 - &
  • [9] WANNIER EXCITONS IN SIMPLE VAN DER WAALS CRYSTALS
    KNOX, RS
    [J]. RADIATION RESEARCH, 1963, 20 (01) : 77 - &
  • [10] Raman spectroscopy regulation in van der Waals crystals
    WEI ZHENG
    YANMING ZHU
    FADI LI
    FENG HUANG
    [J]. Photonics Research, 2018, 6 (11) : 991 - 995