Quasiminimizers in one dimension: integrability of the derivative, inverse function and obstacle problems

被引:0
|
作者
O. Martio
C. Sbordone
机构
[1] University of Helsinki,Department of Mathematics and Statistics
[2] Complesso Universitario di Monte Sant’Angelo,Dipartimento di Matematicae Applicazioni
来源
关键词
49N60; 31C45;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that a K-quasiminimizer u for the one-dimensional p-Dirichlet integral is a K′-quasiminimizer for the q-Dirichlet integral, 1  ≤  q  <  p1(p, K), where p1(p, K) > p; the exact value for p1(p, K) is obtained. The inverse function of a non-constant u is also K′′-quasiminimizer for the s-Dirichlet integral and the range of the exponent s is specified. Connections between quasiminimizers, superminimizers and solutions to obstacle problems are studied.
引用
收藏
页码:579 / 590
页数:11
相关论文
共 50 条
  • [1] Quasiminimizers in one dimension: integrability of the derivative, inverse function and obstacle problems
    Martio, O.
    Sbordone, C.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (04) : 579 - 590
  • [2] THE DOMAIN DERIVATIVE FOR SEMILINEAR ELLIPTIC INVERSE OBSTACLE PROBLEMS
    Hettlich, Frank
    INVERSE PROBLEMS AND IMAGING, 2022, 16 (04) : 691 - 702
  • [3] Higher integrability in parabolic obstacle problems
    Boegelein, Verena
    Scheven, Christoph
    FORUM MATHEMATICUM, 2012, 24 (05) : 931 - 972
  • [4] Global Integrability for Solutions to Obstacle Problems
    Shan Yanan
    Gao Hongya
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2022, 35 (04): : 320 - 330
  • [5] Inverse obstacle problems
    Isakov, Victor
    INVERSE PROBLEMS, 2009, 25 (12)
  • [6] LOCAL AND GLOBAL INTEGRABILITY OF GRADIENTS IN OBSTACLE PROBLEMS
    LI, GB
    MARTIO, O
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1994, 19 (01): : 25 - 34
  • [7] Integrability for solutions to some anisotropic obstacle problems
    Hongya Gao
    Qinghua Di
    Dongna Ma
    Manuscripta Mathematica, 2015, 146 : 433 - 444
  • [8] Integrability for solutions to some anisotropic obstacle problems
    Gao, Hongya
    Di, Qinghua
    Ma, Dongna
    MANUSCRIPTA MATHEMATICA, 2015, 146 (3-4) : 433 - 444
  • [9] Inverse Problems in Darboux’ Theory of Integrability
    Colin Christopher
    Jaume Llibre
    Chara Pantazi
    Sebastian Walcher
    Acta Applicandae Mathematicae, 2012, 120 : 101 - 126
  • [10] Inverse Problems in Darboux' Theory of Integrability
    Christopher, Colin
    Llibre, Jaume
    Pantazi, Chara
    Walcher, Sebastian
    ACTA APPLICANDAE MATHEMATICAE, 2012, 120 (01) : 101 - 126