06A07;
47H07;
47H09;
Nonexpansive maps;
Periods of periodic points;
Admissible arrays;
Semilattice homomorphisms;
D O I:
10.1007/s00029-003-0342-6
中图分类号:
学科分类号:
摘要:
In this paper the set of minimal periods of periodic points of
1-norm nonexpansive maps
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$f:\mathbb{R}^n\rightarrow\mathbb{R}^n$$
\end{document}
is studied. This set is denoted by R(n). The main goal is to
present a characterization of R(n) by arithmetical and
combinatorial constraints. More precisely, it is shown that
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$R(n)=Q'(2n)$$
\end{document}, where
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$Q'(2n)$$
\end{document} denotes the set of periods of
restricted admissible arrays on 2n
symbols. The important point of this equality is that
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$Q'(2n)$$
\end{document}is determined by
arithmetical and combinatorial constraints only, and that it can
be computed in finite time. By using this equality the set R(n)
is computed for
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$1\leq n\leq 10$$
\end{document}. Furthermore it is shown that the largest element
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\psi (n)$$
\end{document}of
R(n) satisfies:
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\log \psi (n) \sim \sqrt{2n\log n}.$$
\end{document}