A characterization of the periods of periodic points of 1-norm nonexpansive maps

被引:0
|
作者
Bas Lemmens
Michael Scheutzow
机构
[1] Technische Universität Berlin,Institut für Mathematik
关键词
06A07; 47H07; 47H09; Nonexpansive maps; Periods of periodic points; Admissible arrays; Semilattice homomorphisms;
D O I
10.1007/s00029-003-0342-6
中图分类号
学科分类号
摘要
In this paper the set of minimal periods of periodic points of 1-norm nonexpansive maps \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f:\mathbb{R}^n\rightarrow\mathbb{R}^n$$ \end{document} is studied. This set is denoted by R(n). The main goal is to present a characterization of R(n) by arithmetical and combinatorial constraints. More precisely, it is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R(n)=Q'(2n)$$ \end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Q'(2n)$$ \end{document} denotes the set of periods of restricted admissible arrays on 2n symbols. The important point of this equality is that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Q'(2n)$$ \end{document}is determined by arithmetical and combinatorial constraints only, and that it can be computed in finite time. By using this equality the set R(n) is computed for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$1\leq n\leq 10$$ \end{document}. Furthermore it is shown that the largest element \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\psi (n)$$ \end{document}of R(n) satisfies: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\log \psi (n) \sim \sqrt{2n\log n}.$$ \end{document}
引用
收藏
页码:557 / 578
页数:21
相关论文
共 50 条