On the Holomorphic Extension of Vector Valued Functions

被引:0
|
作者
Thai Thuan Quang
Nguyen Van Dai
机构
[1] Quy Nhon University,Department of Mathematics
来源
关键词
Holomorphic functions; Holomorphic extension; Topological linear invariants; 32A10; 46A04; 46E50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the holomorphic extension of Fréchet (vector) valued (weakly) holomorphic functions from the linear hull of a closed, bounded, absolutely convex set in E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} to E;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E;$$\end{document} and from a non-pluripolar compact subset in a nuclear Fréchet space to some its neighbourhood.
引用
下载
收藏
页码:567 / 591
页数:24
相关论文
共 50 条
  • [1] On the Holomorphic Extension of Vector Valued Functions
    Thai Thuan Quang
    Nguyen Van Dai
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (03) : 567 - 591
  • [2] Extension of vector-valued holomorphic and meromorphic functions
    Jordá, E
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2005, 12 (01) : 5 - 21
  • [3] Extension of vector-valued holomorphic and harmonic functions
    Bonet, Jose
    Frerick, Leonhard
    Jorda, Enrique
    STUDIA MATHEMATICA, 2007, 183 (03) : 225 - 248
  • [4] Vector valued holomorphic functions
    Barletta, Elisabetta
    Dragomir, Sorin
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2009, 52 (03): : 211 - 226
  • [5] Vector-valued holomorphic functions revisited
    Wolfgang Arendt
    Nicolai Nikolski
    Mathematische Zeitschrift, 2006, 252 : 687 - 689
  • [6] Vector-valued holomorphic functions revisited
    W. Arendt
    N. Nikolski
    Mathematische Zeitschrift, 2000, 234 : 777 - 805
  • [7] Bohr radii of vector valued holomorphic functions
    Defant, Andreas
    Maestre, Manuel
    Schwarting, Ursula
    ADVANCES IN MATHEMATICS, 2012, 231 (05) : 2837 - 2857
  • [8] Vector-valued holomorphic functions revisited
    Arendt, W
    Nikolski, N
    MATHEMATISCHE ZEITSCHRIFT, 2000, 234 (04) : 777 - 805
  • [9] Vector-valued holomorphic and harmonic functions
    Arendt, Wolfgang
    CONCRETE OPERATORS, 2016, 3 (01): : 68 - 76
  • [10] Vector Valued Hyperfunctions and Boundary Values of Vector Valued Harmonic and Holomorphic Functions
    Domanski, Pawel
    Langenbruch, Michael
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2008, 44 (04) : 1097 - 1142