An attribute inspection control chart for process mean monitoring

被引:0
|
作者
Roberto C. Quinino
Lupércio F. Bessegato
Frederico R. B. Cruz
机构
[1] Universidade Federal de Minas Gerais,Departamento de Estatística
[2] Universidade Federal de Juiz de Fora,Departamento de Estatística
关键词
Quality; Control chart; Optimization; Attribute and variable control charts; Average run length;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a new control chart, denoted by X−att\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overset{-}{X}}^{att} $$\end{document}, for evaluating the stability of a process mean. This chart is based on attribute inspection rather than physical measurements (taken with an instrument such as a caliper or precise balance) of the quality characteristics of interest of the sampled items. Based on a go–no-go gauge device (which generates five categorizations), the average of a quality characteristic of interest is controlled. In equally spaced times, samples of n items are collected, and the averages are estimated by means of X−att\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overset{-}{X}}^{att} $$\end{document} based solely on the obtained categorization to decide whether the process is in control. Once the distribution of X−att\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overset{-}{X}}^{att} $$\end{document} is calculated, the decision problem is defined in terms of a mathematical programming formulation to find the dimensions to be used in the go–no-go gauge and to find the control limits that minimize the average run length (ARL) for the out-of-control situation and that are constrained to a prefixed ARL for the under-control situation. As shown by extensive computational experiments, the newly introduced X−att\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overset{-}{X}}^{att} $$\end{document} control chart outperforms the conventional X−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{-}{X} $$\end{document} control chart for small shifts in the means and is still competitive otherwise. Because the new X−att\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overset{-}{X}}^{att} $$\end{document} control chart uses attributes, it can be considered a viable alternative to the conventional X−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{-}{X} $$\end{document} control chart.
引用
收藏
页码:2991 / 2999
页数:8
相关论文
共 50 条
  • [1] An attribute inspection control chart for process mean monitoring
    Quinino, Roberto C.
    Bessegato, Lupercio F.
    Cruz, Frederico R. B.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 90 (9-12): : 2991 - 2999
  • [2] A control chart for monitoring process mean based on attribute inspection
    Wu, Zhang
    Jiao, Jianxin
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2008, 46 (15) : 4331 - 4347
  • [3] A synthetic control chart for monitoring the small shifts in a process mean based on an attribute inspection
    Zhou, Wenhui
    Liu, Na
    Zheng, Zhibin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (09) : 2189 - 2204
  • [4] An np control chart for monitoring the mean of a variable based on an attribute inspection
    Wu, Zhang
    Khoo, Michael B. C.
    Shu, Lianjie
    Jiang, Wei
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2009, 121 (01) : 141 - 147
  • [5] A new npCEV chart for monitoring process mean shifts based on an attribute inspection
    Zhou, Wenhui
    Ye, Ziyu
    Zheng, Zhibin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (02) : 666 - 686
  • [6] An attribute chart for monitoring the process mean and variance
    Haridy, Salah
    Wu, Zhang
    Lee, Ka Man
    Rahim, M. Abdur
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2014, 52 (11) : 3366 - 3380
  • [7] Control chart for process mean monitoring combining variable and attribute inspections
    Quinino, Roberto C.
    Cruz, Frederico R. B.
    Quinino, Victor B.
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 152
  • [8] An attribute control chart for monitoring the variability of a process
    Ho, Linda Lee
    Quinino, Roberto Costa
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2013, 145 (01) : 263 - 267
  • [9] OWave control chart for monitoring the process mean
    Cohen, Achraf
    Tiplica, Teodor
    Kobi, Abdessamad
    [J]. CONTROL ENGINEERING PRACTICE, 2016, 54 : 223 - 230
  • [10] A Fuzzy EWMA Attribute Control Chart to Monitor Process Mean
    Khan, Muhammad Zahir
    Khan, Muhammad Farid
    Aslam, Muhammad
    Niaki, Seyed Taghi Akhavan
    Mughal, Abdur Razzaque
    [J]. INFORMATION, 2018, 9 (12):