P-closure ideals in BCI-algebras

被引:0
|
作者
Hosain Moussaei
Habib Harizavi
Rajab Ali Borzooei
机构
[1] Shahid Chamran University of Ahvaz,Department of Mathematics
[2] Shahid Beheshti University,Department of Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
-algebra; P-ideal; Strong ideal; Closure operator; -closure;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for any non-empty subset A of a BCI-algebra X, we introduce the concept of p-closure of A, denoted by Apc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{pc}$$\end{document}, and investigate some related properties. Applying this concept, we characterize the minimal elements of BCI-algebras. We also give a characterization of the p-closure of subalgebras of X by some branches of X. We state a necessary and sufficient condition for a BCI-algebra (1) to be p-semisimple; (2) to be a BCK-algebra. Moreover, we show that the p-closure can be used to define a closure operator. We investigate the relationship between f(Apc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(A^{pc})$$\end{document} and (f(A))pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f(A))^{pc}$$\end{document} for a BCI-homomorphism f. Finally, we prove that Apc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{pc}$$\end{document} is the least closed p-ideal containing A for any ideal A of X.
引用
收藏
页码:7901 / 7908
页数:7
相关论文
共 50 条
  • [1] P-closure ideals in BCI-algebras
    Moussaei, Hosain
    Harizavi, Habib
    Borzooei, Rajab Ali
    [J]. SOFT COMPUTING, 2018, 22 (23) : 7901 - 7908
  • [2] PSEUDO P-CLOSURE WITH RESPECT TO IDEALS IN PSEUDO BCI-ALGEBRAS
    Moussaei, Hossein
    Harizavi, Habib
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (1-2): : 65 - 77
  • [3] On JU-algebras and p-Closure Ideals
    Ansari, Moin A.
    Haider, Azeem
    Koam, Ali N. A.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (01): : 135 - 154
  • [4] Fuzzy ideals in BCI-algebras
    Liu, YL
    Meng, J
    [J]. FUZZY SETS AND SYSTEMS, 2001, 123 (02) : 227 - 237
  • [5] Soft p-ideals of soft BCI-algebras
    Jun, Young Bae
    Lee, Kyoung Ja
    Zhan, Jianming
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (10) : 2060 - 2068
  • [6] Ideals of BCI-algebras and their Properties
    Wu, Chenglong
    Ding, Yuzhong
    [J]. FORMALIZED MATHEMATICS, 2008, 16 (02): : 109 - 114
  • [7] BCI-implicative ideals of BCI-algebras
    Liu, Yong Lin
    Xu, Yang
    Meng, Jie
    [J]. INFORMATION SCIENCES, 2007, 177 (22) : 4987 - 4996
  • [8] Multipolar Fuzzy p-Ideals of BCI-Algebras
    Takallo, Mohammad Mohseni
    Ahn, Sun Shin
    Borzooei, Rajab Ali
    Jun, Young Bae
    [J]. MATHEMATICS, 2019, 7 (11)
  • [9] Hyperfuzzy Ideals in BCK/BCI-Algebras
    Song, Seok-Zun
    Kim, Seon Jeong
    Jun, Young Bae
    [J]. MATHEMATICS, 2017, 5 (04)
  • [10] On fuzzy ideals in BCK/BCI-algebras
    Meng, J
    Guo, X
    [J]. FUZZY SETS AND SYSTEMS, 2005, 149 (03) : 509 - 525