A nonconforming finite element method for a two-dimensional curl–curl and grad-div problem

被引:0
|
作者
S. C. Brenner
J. Cui
F. Li
L.-Y. Sung
机构
[1] Louisiana State University,Department of Mathematics and Center for Computation and Technology
[2] Louisiana State University,Department of Mathematics
[3] Rensselaer Polytechnic Institute,Department of Mathematical Sciences
来源
Numerische Mathematik | 2008年 / 109卷
关键词
Curl–curl and grad-div problem; Nonconforming finite element methods; Maxwell equations; 65N30; 65N15; 35Q60;
D O I
暂无
中图分类号
学科分类号
摘要
A numerical method for a two-dimensional curl–curl and grad-div problem is studied in this paper. It is based on a discretization using weakly continuous P1 vector fields and includes two consistency terms involving the jumps of the vector fields across element boundaries. Optimal convergence rates (up to an arbitrary positive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon}$$\end{document}) in both the energy norm and the L2 norm are established on graded meshes. The theoretical results are confirmed by numerical experiments.
引用
收藏
页码:509 / 533
页数:24
相关论文
共 50 条
  • [1] A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem
    Brenner, S. C.
    Cui, J.
    Li, F.
    Sung, L. -Y.
    [J]. NUMERISCHE MATHEMATIK, 2008, 109 (04) : 509 - 533
  • [2] A NONCONFORMING PENALTY METHOD FOR A TWO-DIMENSIONAL CURL-CURL PROBLEM
    Brenner, Susanne C.
    Li, Fengyan
    Sung, Li-Yeng
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (04): : 651 - 668
  • [3] A quadratic nonconforming vector finite element for H(curl; Ω) ∧ H(div; Ω)
    Brenner, Susanne C.
    Sung, Li-Yeng
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 892 - 896
  • [4] Nonconforming vector finite elements for H(curl; Ω) ∧ H(div; Ω)
    Mirebeau, Jean-Marie
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 369 - 373
  • [5] Discontinuous Least-Squares finite element method for the Div-Curl problem
    Rickard Bensow
    Mats G. Larson
    [J]. Numerische Mathematik, 2005, 101 : 601 - 617
  • [6] Discontinuous Least-Squares finite element method for the Div-Curl problem
    Bensow, R
    Larson, MG
    [J]. NUMERISCHE MATHEMATIK, 2005, 101 (04) : 601 - 617
  • [7] A div-curl-grad formulation for compressible buoyant flows solved by the least-squares finite element method
    Yu, ST
    Jiang, BN
    Wu, J
    Liu, NS
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 137 (01) : 59 - 88
  • [8] Gradient recovery based finite element methods for the two-dimensional quad-curl problem
    Fang, Yuzhi
    Feng, Yuan
    Xu, Minqiang
    Zhang, Lei
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 146
  • [9] FINITE-ELEMENT APPROXIMATION FOR GRAD-DIV TYPE SYSTEMS IN THE PLANE
    CHANG, CL
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (02) : 452 - 461
  • [10] A two-level finite element method with grad-div stabilizations for the incompressible Navier-Stokes equations
    Shang, Yueqiang
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 446