Hybridization of Ontologies and Neural Networks in the Problems of Detecting Anomalies of Time Series

被引:0
|
作者
V. S. Moshkin
D. S. Kurilo
I. A. Andreev
机构
[1] Ulyanovsk State Technical University,
来源
关键词
time series; ontology; neural network; anomaly detection;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:425 / 431
页数:6
相关论文
共 50 条
  • [1] Hybridization of Ontologies and Neural Networks in the Problems of Detecting Anomalies of Time Series
    Moshkin, V. S.
    Kurilo, D. S.
    Andreev, I. A.
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, 2023, 33 (03) : 425 - 431
  • [2] Integration of Fuzzy Ontologies and Neural Networks in the Detection of Time Series Anomalies
    Moshkin, Vadim
    Kurilo, Dmitry
    Yarushkina, Nadezhda
    [J]. MATHEMATICS, 2023, 11 (05)
  • [3] Detecting anomalies in time series data from a manufacturing system using recurrent neural networks
    Wang, Yue
    Perry, Michael
    Whitlock, Dane
    Sutherland, John W.
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2022, 62 : 823 - 834
  • [4] Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform
    Kanarachos, Stratis
    Christopoulos, Stavros-Richard G.
    Chroneos, Alexander
    Fitzpatrick, Michael E.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2017, 85 : 292 - 304
  • [5] A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    Khashei, Mehdi
    Bijari, Mehdi
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (02) : 2664 - 2675
  • [6] Graph neural networks for detecting anomalies in scientific workflows
    Jin, Hongwei
    Raghavan, Krishnan
    Papadimitriou, George
    Wang, Cong
    Mandal, Anirban
    Kiran, Mariam
    Deelman, Ewa
    Balaprakash, Prasanna
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2023, 37 (3-4): : 394 - 411
  • [7] Learning states and rules for detecting anomalies in time series
    Salvador, S
    Chan, P
    [J]. APPLIED INTELLIGENCE, 2005, 23 (03) : 241 - 255
  • [8] Learning States and Rules for Detecting Anomalies in Time Series
    Stan Salvador
    Philip Chan
    [J]. Applied Intelligence, 2005, 23 : 241 - 255
  • [9] Detecting Methane Outbreaks from Time Series Data with Deep Neural Networks
    Pawlowski, Krzysztof
    Kurach, Karol
    [J]. ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, RSFDGRC 2015, 2015, 9437 : 475 - 484
  • [10] Detecting and Diagnosing Anomalies in Cellular Networks using Random Neural Networks
    Casas, Pedro
    D'Alconzo, Alessandro
    Fiadino, Pierdomenico
    Callegari, Christian
    [J]. 2016 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2016, : 351 - 356