Sandpiles on the Square Lattice

被引:0
|
作者
Robert D. Hough
Daniel C. Jerison
Lionel Levine
机构
[1] Stony Brook University,Department of Mathematics
[2] Cornell University,Department of Mathematics
[3] Tel Aviv University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We give a non-trivial upper bound for the critical density when stabilizing i.i.d. distributed sandpiles on the lattice Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}^2}$$\end{document} . We also determine the asymptotic spectral gap, asymptotic mixing time, and prove a cutoff phenomenon for the recurrent state abelian sandpile model on the torus Z/mZ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left(\mathbb{Z}/m\mathbb{Z}\right)^2}$$\end{document} . The techniques use analysis of the space of functions on Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}^2}$$\end{document} which are harmonic modulo 1. In the course of our arguments, we characterize the harmonic modulo 1 functions in ℓp(Z2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell^p(\mathbb{Z}^2)}$$\end{document} as linear combinations of certain discrete derivatives of Green’s functions, extending a result of Schmidt and Verbitskiy (Commun Math Phys 292(3):721–759, 2009. arXiv:0901.3124 [math.DS]).
引用
收藏
页码:33 / 87
页数:54
相关论文
共 50 条
  • [1] Sandpiles on the Square Lattice
    Hough, Robert D.
    Jerison, Daniel C.
    Levine, Lionel
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 367 (01) : 33 - 87
  • [2] Bethe lattice representation for sandpiles
    Sotolongo-Costa, O
    Vazquez, A
    Antoranz, JC
    [J]. PHYSICAL REVIEW E, 1999, 59 (06) : 6956 - 6961
  • [3] Minimal Sandpiles on Hexagonal Lattice
    V. B. Priezzhev
    D. V. Ktitarev
    [J]. Journal of Statistical Physics, 1997, 88 : 781 - 793
  • [4] Minimal sandpiles on hexagonal lattice
    Priezzhev, VB
    Ktitarev, DV
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) : 781 - 793
  • [5] Square Lattice Iridates
    Bertinshaw, Joel
    Kim, Y. K.
    Khaliullin, Giniyat
    Kim, B. J.
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 : 315 - 336
  • [6] The β-differential for the square lattice
    Niu, Qiannan
    Ren, Haizhen
    Zhang, Lei
    [J]. 2021 11th International Workshop on Computer Science and Engineering, WCSE 2021, 2021, : 155 - 162
  • [7] The square lattice shuffle
    Hastad, Johan
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (04) : 466 - 474
  • [8] ON THE NUMBER OF LATTICE ANIMALS EMBEDDABLE IN THE SQUARE LATTICE
    GUTTMANN, AJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (06): : 1987 - 1990
  • [9] TRAIL PROBLEM ON SQUARE LATTICE
    MALAKIS, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (08): : 1283 - 1291
  • [10] Rigidity percolation on the square lattice
    Ellenbroek, Wouter G.
    Mao, Xiaoming
    [J]. EPL, 2011, 96 (05)