The purpose of this study is to determine the pyrolysis characteristics and gas product properties of printed circuit board (PCB) waste. For this purpose, a combination of Thermogravimetry-Fourier Transform Infrared Spectrum (TG-FTIR) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) techniques is employed. In the TG-FTIR experiment, a heating rate of 10 °C min−1 and a terminal pyrolysis temperature of 600 °C are applied. The thermal decomposition temperature, weight losses, and the temperature trend of evolving gaseous products of PCB waste are investigated. Py-GC/MS is used for the qualitative and semi-quantitative analysis of the higher-molecular-weight volatile decomposition products. Associated with the analysis results of TG-FTIR and Py-GC/MS for the volatile products, PCB waste degradation could be subdivided into three stages. The main products in the first stage (<293 °C) are H2O, CH4, HBr, CO2 and CH3COCH3. High-molecular-weight organic species, including bromophenols, bisphenol A, p-isopropenyl phenol, phenol, etc., mainly evolve in the second stage. In the last stage, at temperature above 400 °C, carbonization and char formation occur. This fundamental study provides a basic insight of PCB waste pyrolysis.