Existence of infinitely many solutions for a p-Kirchhoff problem in RN

被引:0
|
作者
Zonghu Xiu
Jing Zhao
Jianyi Chen
机构
[1] Qingdao Agricultural University,Science and Information College
来源
关键词
Singular elliptic problem; Variational methods; Palais–Smale condition;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the existence of multiple solutions of the following singular nonlocal elliptic problem: {−M(∫RN|x|−ap|∇u|p)div(|x|−ap|∇u|p−2∇u)=h(x)|u|r−2u+H(x)|u|q−2u,u(x)→0as |x|→∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} -M(\int _{\mathbb{R} ^{N}}{ \vert x \vert ^{-ap} \vert \nabla u \vert ^{p}})\operatorname{div}( \vert x \vert ^{-ap} \vert \nabla u \vert ^{p-2}\nabla u)= h(x) \vert u \vert ^{r-2}u+H(x) \vert u \vert ^{q-2}u, \\ u(x)\rightarrow 0 \quad \text{as } \vert x \vert \rightarrow \infty , \end{cases}\displaystyle \end{aligned}$$ \end{document} where x∈RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in \mathbb{R} ^{N}$\end{document}, and M(t)=α+βt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(t)=\alpha +\beta t$\end{document}. By the variational method we prove that the problem has infinitely many solutions when some conditions are fulfilled.
引用
收藏
相关论文
共 50 条
  • [1] Existence of infinitely many solutions for a p-Kirchhoff problem in RN
    Xiu, Zonghu
    Zhao, Jing
    Chen, Jianyi
    [J]. BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [2] Infinitely many solutions for the stationary fractional p-Kirchhoff problems in RN
    Akkoyunlu, Ebubekir
    Ayazoglu, Rabil
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (05):
  • [3] Infinitely many solutions for p-Kirchhoff equation with concave-convex nonlinearities in RN
    Chen, Caisheng
    Chen, Qiang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (06) : 1493 - 1504
  • [4] Infinitely Many Solutions for Fractional p-Kirchhoff Equations
    Libo Yang
    Tianqing An
    [J]. Mediterranean Journal of Mathematics, 2018, 15
  • [5] Infinitely Many Solutions for Fractional p-Kirchhoff Equations
    Yang, Libo
    An, Tianqing
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [6] Existence and multiplicity of solutions for a p-Kirchhoff equation on RN
    Huang, Jincheng
    [J]. BOUNDARY VALUE PROBLEMS, 2018,
  • [7] EXISTENCE OF MULTIPLE SOLUTIONS TO A P-KIRCHHOFF PROBLEM
    Graef, John R.
    Heidarkhani, Shapour
    Kong, Lingju
    Ghobadi, Ahmad
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (02): : 227 - 237
  • [8] Existence, multiplicity, and nonexistence of solutions for a p-Kirchhoff elliptic equation on RN
    Liu, Lihua
    Zhou, Chunxiu
    [J]. BOUNDARY VALUE PROBLEMS, 2017,
  • [9] Multiple solutions for p-Kirchhoff equations in RN
    Chen, Caisheng
    Song, Hongxue
    Xiu, Zhonghu
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 : 146 - 156
  • [10] EXISTENCE OF SOLUTION TO p-KIRCHHOFF TYPE PROBLEM IN RN VIA NEHARI MANIFOLD
    Chen, Caisheng
    Yuan, Qing
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) : 2289 - 2303