Pathwise uniqueness for reflecting Brownian motion in Euclidean domains

被引:0
|
作者
Richard F. Bass
Elton P. Hsu
机构
[1] Department of Mathematics,
[2] University of Connecticut,undefined
[3] 196 Auditorium Road,undefined
[4] Storrs,undefined
[5] CT 06269-3009,undefined
[6] USA. e-mail:bass@math.uconn.edu,undefined
[7] Department of Mathematics,undefined
[8] Northwestern University,undefined
[9] Evanston,undefined
[10] IL 60208,undefined
[11] USA. e-mail:elton@math.nwu.edu,undefined
来源
关键词
Brownian Motion; Strong Solution; Strong Uniqueness; Weak Uniqueness; Euclidean Domain;
D O I
暂无
中图分类号
学科分类号
摘要
For a bounded C1,α domain in ℝd we show that there exists a strong solution to the multidimensional Skorokhod equation and that weak uniqueness holds for this equation. These results imply that pathwise uniqueness and strong uniqueness hold for the Skorokhod equation.
引用
收藏
页码:183 / 200
页数:17
相关论文
共 50 条
  • [1] Pathwise uniqueness for reflecting Brownian motion in Euclidean domains
    Bass, RF
    Hsu, EP
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (02) : 183 - 200
  • [2] ON PATHWISE UNIQUENESS FOR REFLECTING BROWNIAN MOTION IN C1+γ DOMAINS
    Bass, Richard F.
    Burdzy, Krzysztof
    [J]. ANNALS OF PROBABILITY, 2008, 36 (06): : 2311 - 2331
  • [3] Pathwise uniqueness for reflecting Brownian motion in certain planar Lipschitz domains
    Bass, Richard F.
    Burdzy, Krzysztof
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2006, 11 : 178 - 181
  • [4] Uniqueness for reflecting Brownian motion in lip domains
    Bass, RF
    Burdzy, K
    Chen, ZQ
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (02): : 197 - 235
  • [5] Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion
    L. Chaumont
    R. A. Doney
    [J]. Probability Theory and Related Fields, 1999, 113 : 519 - 534
  • [6] Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion
    Chaumont, L
    Doney, RA
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (04) : 519 - 534
  • [7] On the duration of stays of Brownian motion in domains in Euclidean space
    Betsakos, Dimitrios
    Boudabra, Maher
    Markowsky, Greg
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [8] Approximation of solutions of SDEs driven by a fractional Brownian motion, under pathwise uniqueness
    El Barrimi, Oussama
    Ouknine, Youssef
    [J]. MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2016, 3 (04): : 303 - 313
  • [9] Reflecting Brownian motion in generalized parabolic domains: Explosion and superdiffusivity
    V. Menshikov, Mikhail
    Mijatovic, Aleksandar
    Wade, Andrew R.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 1813 - 1843
  • [10] The Reflecting Brownian Motion
    Zambotti, Lorenzo
    [J]. RANDOM OBSTACLE PROBLEMS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLV - 2015, 2017, 2181 : 13 - 30