Classification of genes based on gene expression analysis

被引:0
|
作者
M. Angelova
C. Myers
J. Faith
机构
[1] Northumbria University,
来源
Physics of Atomic Nuclei | 2008年 / 71卷
关键词
07.05.Kf; 07.05.Rm; 02.50.-r; 89.75.Kd;
D O I
暂无
中图分类号
学科分类号
摘要
Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.
引用
收藏
页码:780 / 787
页数:7
相关论文
共 50 条
  • [1] Classification of genes based on gene expression analysis
    Angelova, M.
    Myers, C.
    Faith, J.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2008, 71 (05) : 780 - 787
  • [2] Classification of neuroblastomas based on an analysis of the expression of genes related to prognosis
    Tajiri, Tatsuro
    Higashi, Mayumi
    Souzaki, Ryota
    Tatsuta, Kyousuke
    Kinoshita, Yoshiaki
    Taguchi, Tomoaki
    [J]. JOURNAL OF PEDIATRIC SURGERY, 2007, 42 (12) : 2046 - 2049
  • [3] Selection of the most useful subset of genes for gene expression-based classification
    Paul, TK
    Iba, H
    [J]. CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 2076 - 2083
  • [4] Selecting Few Genes for Microarray Gene Expression Classification
    Alonso-Gonzalez, Carlos J.
    Isaac Moro, Q.
    Prieto, Oscar J.
    Aranzazu Simon, M.
    [J]. CURRENT TOPICS IN ARTIFICIAL INTELLIGENCE, 2010, 5988 : 111 - 120
  • [5] Gene expression based cancer classification
    Tarek, Sara
    Abd Elwahab, Reda
    Shoman, Mahmoud
    [J]. EGYPTIAN INFORMATICS JOURNAL, 2017, 18 (03) : 151 - 159
  • [6] Spatial clustering based gene selection for gene expression analysis in microarray data classification
    Dhas, P. Edwin
    Lalitha, S.
    Govindaraj, Annalakshmi
    Jyoshna, B.
    [J]. AUTOMATIKA, 2024, 65 (01) : 152 - 158
  • [7] Feasible analysis of gene expression -a computational based classification for breast cancer
    Nandagopal, V
    Geeitha, S.
    Kumar, K. Vinoth
    Anbarasi, J.
    [J]. MEASUREMENT, 2019, 140 : 120 - 125
  • [8] CNS temporal gene expression profiling and genes functional classification
    Potamias, G
    Dermon, RC
    [J]. JOURNAL OF NEUROCHEMISTRY, 2004, 90 : 138 - 138
  • [9] A new gene superfamily of pathogen-response (repat) genes in Lepidoptera: Classification and expression analysis
    Navarro-Cerrillo, G.
    Hernandez-Martinez, P.
    Vogel, H.
    Ferre, J.
    Herrero, S.
    [J]. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 2013, 164 (01): : 10 - 17
  • [10] A sequence-based approach to identify reference genes for gene expression analysis
    Raj Chari
    Kim M Lonergan
    Larissa A Pikor
    Bradley P Coe
    Chang Qi Zhu
    Timothy HW Chan
    Calum E MacAulay
    Ming-Sound Tsao
    Stephen Lam
    Raymond T Ng
    Wan L Lam
    [J]. BMC Medical Genomics, 3