The first main result of this paper establishes that any sufficiently large subset of a plane over the finite field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{F}_q$$\end{document}, namely any set \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E \subseteq \mathbb{F}_q^2$$\end{document} of cardinality |E| > q, determines at least \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tfrac{{q - 1}}
{2}$$\end{document} distinct areas of triangles. Moreover, one can find such triangles sharing a common base in E, and hence a common vertex. However, we stop short of being able to tell how “typical” an element of E such a vertex may be.
机构:
Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R ChinaYangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
Ding, Yuchen
Zhou, Haiyan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210023, Peoples R ChinaYangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
机构:
Univ Leoben, Chair Math & Stat, Franz Josef Str 18, A-8700 Leoben, Austria
Univ Philippines Diliman, Inst Math, Quezon City 1101, PhilippinesUniv Leoben, Chair Math & Stat, Franz Josef Str 18, A-8700 Leoben, Austria
Loquias, Manuel Joseph C.
Mkaouar, Mohamed
论文数: 0引用数: 0
h-index: 0
机构:
Fac Sci Sfax, BP 802, Sfax 3018, TunisiaUniv Leoben, Chair Math & Stat, Franz Josef Str 18, A-8700 Leoben, Austria
Mkaouar, Mohamed
Scheicher, Klaus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nat Resources & Appl Life Sci, Inst Math, Gregor Mendel Str 33, A-1180 Vienna, AustriaUniv Leoben, Chair Math & Stat, Franz Josef Str 18, A-8700 Leoben, Austria