Areas of triangles and Beck’s theorem in planes over finite fields

被引:0
|
作者
Alex Iosevich
Misha Rudnev
Yujia Zhai
机构
[1] University of Rochester,Department of Mathematics
[2] University of Bristol,Department of Mathematics
[3] University of Rochester,Department of Mathematics
来源
Combinatorica | 2015年 / 35卷
关键词
68R05; 11B75;
D O I
暂无
中图分类号
学科分类号
摘要
The first main result of this paper establishes that any sufficiently large subset of a plane over the finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_q$$\end{document}, namely any set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \subseteq \mathbb{F}_q^2$$\end{document} of cardinality |E| > q, determines at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{{q - 1}} {2}$$\end{document} distinct areas of triangles. Moreover, one can find such triangles sharing a common base in E, and hence a common vertex. However, we stop short of being able to tell how “typical” an element of E such a vertex may be.
引用
收藏
页码:295 / 308
页数:13
相关论文
共 50 条