Importance of medical data preprocessing in predictive modeling and risk factor discovery for the frailty syndrome

被引:0
|
作者
Andreas Philipp Hassler
Ernestina Menasalvas
Francisco José García-García
Leocadio Rodríguez-Mañas
Andreas Holzinger
机构
[1] Holzinger Group,
[2] HCI-KDD,undefined
[3] Institute for Medical Informatics/Statistics,undefined
[4] Medical University Graz,undefined
[5] Institute of Interactive Systems and Data Science,undefined
[6] Graz University of Technology,undefined
[7] Center for Biomedical Technology,undefined
[8] Universidad Politecnica de Madrid,undefined
[9] Division of Geriatric Medicine,undefined
[10] Virgen del Valle Geriatric Hospital,undefined
[11] Division of Geriatric Medicine,undefined
[12] University Hospital of Getafe,undefined
来源
BMC Medical Informatics and Decision Making | / 19卷
关键词
Health data analytics; Data mining; Machine learning; Predictive modeling; Risk factor discovery; Data preprocessing; Missing value imputation; Frailty syndrome;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Importance of medical data preprocessing in predictive modeling and risk factor discovery for the frailty syndrome
    Philipp Hassler, Andreas
    Menasalvas, Ernestina
    Jose Garcia-Garcia, Francisco
    Rodriguez-Manas, Leocadio
    Holzinger, Andreas
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (1)
  • [2] A systematic map of medical data preprocessing in knowledge discovery
    Idri, A.
    Benhar, H.
    Fernandez-Aleman, J. L.
    Kadi, I.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 162 : 69 - 85
  • [3] Evaluation of predictive performance of modeling hyperuricemia using medical big data: comparison of data preprocessing methods
    Li, Luwei
    Huang, Xian
    Yan, Cijin
    He, Shuzhan
    Cheng, Sishuai
    Yang, WenJie
    JOURNAL OF BIG DATA, 2025, 12 (01)
  • [4] The Metabolic Syndrome: A Risk Factor for the Frailty Syndrome?
    Viscogliosi, Giovanni
    JOURNAL OF THE AMERICAN MEDICAL DIRECTORS ASSOCIATION, 2016, 17 (04) : 364 - 366
  • [5] Cleansing drug discovery data for data science predictive modeling
    Stouch, Terry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [6] Efficient discovery of risk patterns in medical data
    Li, Jiuyong
    Fu, Ada Wai-chee
    Fahey, Paul
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2009, 45 (01) : 77 - 89
  • [7] Frailty Syndrome: A Risk Factor Associated With Violence in Older Adults
    dos Santos, Renata Clemente
    Menezes, Rejane Maria de Paiva
    Souto, Rafaella Queiroga
    de Araujo, Gleicy Karine Nascimento
    Marcolino, Emanuella de Castro
    Soares, Maria Cidney da Silva
    Almeida, Jank Landy Simoa
    JOURNAL OF FORENSIC NURSING, 2020, 16 (03) : 130 - 137
  • [8] Importance of data preprocessing for neural networks modeling: The case of estimating the compaction parameters of soils
    Isik, Fatih
    Ozden, Gurkan
    Kuntalp, Mehmet
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2012, 29 (01): : 463 - 474
  • [9] Preprocessing structured clinical data for predictive modeling and decision support A roadmap to tackle the challenges
    Ferrao, Jose Carlos
    Oliveira, Monica Duarte
    Janela, Filipe
    Martins, Henrique M. G.
    APPLIED CLINICAL INFORMATICS, 2016, 7 (04): : 1135 - 1153
  • [10] Importance of data preprocessing for neural networks modeling: The case of estimating the compaction parameters of soils
    Isik, Fatih
    Ozden, Gurkan
    Kuntalp, Mehmet
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2012, 29 (02): : 871 - 882