CEVCLUS: evidential clustering with instance-level constraints for relational data

被引:0
|
作者
V. Antoine
B. Quost
M.-H. Masson
T. Denoeux
机构
[1] PRES Clermont Université LIMOS,Université Blaise Pascal
[2] UMR CNRS 6158,Université de Technologie de Compiègne
[3] Laboratoire Heudiasyc,Université de Picardie Jules Verne
[4] IUT de l’Oise Laboratoire Heudiasyc,undefined
来源
Soft Computing | 2014年 / 18卷
关键词
Belief functions; Evidence theory; Dempster–Shafer theory; Relational data; Pairwise constraints; Constrained clustering;
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances in clustering consider incorporating background knowledge in the partitioning algorithm, using, e.g., pairwise constraints between objects. As a matter of fact, prior information, when available, often makes it possible to better retrieve meaningful clusters in data. Here, this approach is investigated in the framework of belief functions, which allows us to handle the imprecision and the uncertainty of the clustering process. In this context, the EVCLUS algorithm was proposed for partitioning objects described by a dissimilarity matrix. It is extended here so as to take pairwise constraints into account, by adding a term to its objective function. This term corresponds to a penalty term that expresses pairwise constraints in the belief function framework. Various synthetic and real datasets are considered to demonstrate the interest of the proposed method, called CEVCLUS, and two applications are presented. The performances of CEVCLUS are also compared to those of other constrained clustering algorithms.
引用
收藏
页码:1321 / 1335
页数:14
相关论文
共 50 条
  • [1] CEVCLUS: evidential clustering with instance-level constraints for relational data
    Antoine, V.
    Quost, B.
    Masson, M. -H.
    Denoeux, T.
    [J]. SOFT COMPUTING, 2014, 18 (07) : 1321 - 1335
  • [2] Fuzzy Clustering and Aggregation of Relational Data With Instance-Level Constraints
    Frigui, Hichem
    Hwang, Cheul
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (06) : 1565 - 1581
  • [3] On a New Evidential C-Means Algorithm with Instance-Level Constraints
    Xie, Jiarui
    Antoine, Violaine
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, SUM 2019, 2019, 11940 : 66 - 78
  • [4] CEVCLUS: Constrained evidential clustering of proximity data
    Antoine, Violaine
    Quost, Benjamin
    Masson, Marie-Helene
    Denoeux, Thierry
    [J]. PROCEEDINGS OF THE 7TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-2011) AND LFA-2011, 2011, : 876 - 882
  • [5] Expert-driven trace clustering with instance-level constraints
    De Koninck, Pieter
    Nelissen, Klaas
    vanden Broucke, Seppe
    Baesens, Bart
    Snoeck, Monique
    De Weerdt, Jochen
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (05) : 1197 - 1220
  • [6] Expert-driven trace clustering with instance-level constraints
    Pieter De Koninck
    Klaas Nelissen
    Seppe vanden Broucke
    Bart Baesens
    Monique Snoeck
    Jochen De Weerdt
    [J]. Knowledge and Information Systems, 2021, 63 : 1197 - 1220
  • [7] Semi-supervised clustering and feature discrimination with instance-level constraints
    Frigui, Hichem
    Mahdi, Rami
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1720 - 1725
  • [8] Active Learning of Instance-level Constraints for Semi-supervised Document Clustering
    Zhao, Weizhong
    He, Qing
    Ma, Huifang
    Shi, Zhongzhi
    [J]. 2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2009, : 264 - 268
  • [9] Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results
    Davidson, Ian
    Ravi, S. S.
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2009, 18 (02) : 257 - 282
  • [10] Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results
    Ian Davidson
    S. S. Ravi
    [J]. Data Mining and Knowledge Discovery, 2009, 18 : 257 - 282