An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model

被引:0
|
作者
Jun Zhang
Shimin Lin
Zixin Liu
Fubiao Lin
机构
[1] Guizhou University of Finance and Economics,Computational Mathematics Research Center
[2] Jimei University,Department of Science
[3] Guizhou University of Finance and Econmics,School of Mathematics and Statistical
关键词
FitzHugh–Nagumo model; Space fractional; Unconditionally stable; Legendre-spectral method; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the numerical approximation for the space fractional FitzHugh–Nagumo model. The numerical scheme is based on the Crank–Nicolson (C–N) method in time and Legendre-spectral method in space. In addition, we prove that the numerical scheme is unconditionally stable. Numerical examples are presented to verify validity of the proposed scheme.
引用
收藏
相关论文
共 50 条
  • [1] An efficient numerical approach to solve the space fractional FitzHugh-Nagumo model
    Zhang, Jun
    Lin, Shimin
    Liu, Zixin
    Lin, Fubiao
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [2] Numerical Analysis of Fractional-in-space Fitzhugh Nagumo Model with Finite Volume Method
    Chen Aimin
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11362 - 11367
  • [3] An efficient numerical approach to solve Schrodinger equations with space fractional derivative
    Zhang, Jun
    Lin, Shimin
    Wang, JinRong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) : 1596 - 1608
  • [4] The FitzHugh-Nagumo Model Described by Fractional Difference Equations: Stability and Numerical Simulation
    Hamadneh, Tareq
    Hioual, Amel
    Alsayyed, Omar
    Al-Khassawneh, Yazan Alaya
    Al-Husban, Abdallah
    Ouannas, Adel
    [J]. AXIOMS, 2023, 12 (09)
  • [5] ANALYSIS OF THE FITZHUGH NAGUMO MODEL WITH A NEW NUMERICAL SCHEME
    Mishra, Jyoti
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 781 - 795
  • [6] A fractional-order improved FitzHugh–Nagumo neuron model
    Pushpendra Kumar
    Vedat Suat Erturk
    [J]. Chinese Physics B, 2025, 34 (01) : 523 - 532
  • [7] An efficient analysis of FitzHugh-Nagumo circuit model
    Yosef Khakipoor
    Hossein B. Bahar
    Ghader Karimian
    [J]. Analog Integrated Circuits and Signal Processing, 2022, 110 : 385 - 393
  • [8] An efficient analysis of FitzHugh-Nagumo circuit model
    Khakipoor, Yosef
    Bahar, Hossein B.
    Karimian, Ghader
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2022, 110 (03) : 385 - 393
  • [9] An alternative approach for the circuit synthesis of the fractional-order FitzHugh-Nagumo neuron model
    Korkmaz, Nimet
    Sacu, Ibrahim Ethem
    [J]. PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2022, 28 (02): : 248 - 254
  • [10] A popular reaction-diffusion model fractional Fitzhugh-Nagumo equation: analytical and numerical treatment
    Orkun Tasbozan
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 218 - 228