Consistency of V = HOD with the wholeness axiom

被引:0
|
作者
Paul Corazza
机构
[1] Corazza Software Solutions,
[2] Fairfield,undefined
[3] IA 52556,undefined
[4] USA (e-mail: paul_corazza@yahoo.com) ,undefined
来源
关键词
Mathematics Subject Classification (1991):03E55, 03E35; Key words and phrases:Wholeness Axiom – Elementary embeddings –HOD– Regular classes – Laver sequences;
D O I
暂无
中图分类号
学科分类号
摘要
The Wholeness Axiom (WA) is an axiom schema that can be added to the axioms of ZFC in an extended language \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\{\in,j\}$\end{document}, and that asserts the existence of a nontrivial elementary embedding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $j:V\to V$\end{document}. The well-known inconsistency proofs are avoided by omitting from the schema all instances of Replacement for j-formulas. We show that the theory ZFC + V = HOD + WA is consistent relative to the existence of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $I_1$\end{document} embedding. This answers a question about the existence of Laver sequences for regular classes of set embeddings: Assuming there is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $I_1$\end{document}-embedding, there is a transitive model of ZFC +WA + “there is a regular class of embeddings that admits no Laver sequence.”
引用
收藏
页码:219 / 226
页数:7
相关论文
共 50 条