We recently derived a very accurate and fast new algorithm for numerically inverting the Laplace transforms needed to obtain gluon distributions from the proton structure function \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$F_{2}^{\gamma p}(x,Q^{2})$\end{document}. We numerically inverted the function g(s), s being the variable in Laplace space, to G(v), where v is the variable in ordinary space. We have since discovered that the algorithm does not work if g(s)→0 less rapidly than 1/s as s→∞, e.g., as 1/sβ for 0<β<1. In this note, we derive a new numerical algorithm for such cases, which holds for all positive and non-integer negative values of β. The new algorithm is exact if the original function G(v) is given by the product of a power vβ−1 and a polynomial in v. We test the algorithm numerically for very small positive β, β=10−6 obtaining numerical results that imitate the Dirac delta function δ(v). We also devolve the published MSTW2008LO gluon distribution at virtuality Q2=5 GeV2 down to the lower virtuality Q2=1.69 GeV2. For devolution, β is negative, giving rise to inverse Laplace transforms that are distributions and not proper functions. This requires us to introduce the concept of Hadamard Finite Part integrals, which we discuss in detail.