Large Deviation Rates for Supercritical Branching Processes with Immigration

被引:0
|
作者
Liuyan Li
Junping Li
机构
[1] Central South University,School of Mathematics and Statistics
来源
关键词
Large deviation; Supercritical branching process; Immigration; Primary 60J27; Secondary 60J35;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xn}0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{X_n\}_0^{\infty }$$\end{document} be a supercritical branching process with immigration with offspring distribution {pj}0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{p_j\}_0^{\infty }$$\end{document} and immigration distribution {hi}0∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{h_i\}_0^{\infty }.$$\end{document} Throughout this paper, we assume that p0=0,pj≠1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_0=0, p_j\ne 1$$\end{document} for any j≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\ge 1$$\end{document} , 1<m=∑j=0∞jpj<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<m=\sum _{j=0}^{\infty } jp_j<\infty ,$$\end{document} and h0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_0<1$$\end{document}, 0<a=∑j=0∞jhj<∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<a=\sum _{j=0}^{\infty } jh_j<\infty .$$\end{document} We first show that Yn=m-n(Xn-mn+1-1m-1a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_n=m^{-n}(X_n-\frac{m^{n+1}-1}{m-1}a)$$\end{document} is a martingale and converges to a random variable Y. Secondly, we study the rates of convergence to 0 as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document} of P(Yn-Y>ε),PXn+1Xn-m>ε|Y≥α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P(\left| Y_n-Y\right|>\varepsilon ), \ \ P\left( \left| \frac{X_{n+1}}{X_n}-m\right| >\varepsilon \Bigg |Y\ge \alpha \right) \end{aligned}$$\end{document}for ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} and α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} under various moment conditions on {pj}0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{p_j\}_0^{\infty }$$\end{document} and {hi}0∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{h_i\}_0^{\infty }.$$\end{document} It is shown that the rates are always supergeometric under a finite moment generating function hypothesis.
引用
收藏
页码:162 / 172
页数:10
相关论文
共 50 条
  • [1] Large Deviation Rates for Supercritical Branching Processes with Immigration
    Li, Liuyan
    Li, Junping
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (01) : 162 - 172
  • [2] Large Deviation for Supercritical Branching Processes with Immigration
    Jing Ning LIU
    Mei ZHANG
    [J]. Acta Mathematica Sinica,English Series, 2016, (08) : 893 - 900
  • [3] Large deviation for supercritical branching processes with immigration
    Jing Ning Liu
    Mei Zhang
    [J]. Acta Mathematica Sinica, English Series, 2016, 32 : 893 - 900
  • [4] Large deviation for supercritical branching processes with immigration
    Liu, Jing Ning
    Zhang, Mei
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (08) : 893 - 900
  • [5] Large Deviation for Supercritical Branching Processes with Immigration
    Jing Ning LIU
    Mei ZHANG
    [J]. Acta Mathematica Sinica., 2016, 32 (08) - 900
  • [6] Large Deviation Rates for the Continuous-Time Supercritical Branching Processes with Immigration
    Wang, Juan
    Wang, Xiaojuan
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [7] Harmonic moments and large deviation rates for supercritical branching processes
    Ney, PE
    Vidyashankar, AN
    [J]. ANNALS OF APPLIED PROBABILITY, 2003, 13 (02): : 475 - 489
  • [8] Large deviation rates for Markov branching processes
    Li, Junping
    Cheng, Lan
    Pakes, Anthony G.
    Chen, Anyue
    Li, Liuyan
    [J]. ANALYSIS AND APPLICATIONS, 2020, 18 (03) : 447 - 468
  • [9] SELF-NORMALIZED LARGE DEVIATION FOR SUPERCRITICAL BRANCHING PROCESSES
    Chu, Weijuan
    [J]. JOURNAL OF APPLIED PROBABILITY, 2018, 55 (02) : 450 - 458
  • [10] Harmonic moments and large deviations for supercritical branching processes with immigration
    Qi Sun
    Mei Zhang
    [J]. Frontiers of Mathematics in China, 2017, 12 : 1201 - 1220