Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition

被引:42
|
作者
Cabrera D. [1 ,2 ]
Sancho F. [2 ]
Sánchez R.-V. [1 ]
Zurita G. [1 ,3 ]
Cerrada M. [1 ,4 ]
Li C. [1 ,5 ]
Vásquez R.E. [6 ]
机构
[1] Departamento de Ingeniería Mecánica, Universidad Politécnica Salesiana, Cuenca
[2] Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Sevilla, España
[3] Departamento de Ingeniería Electro-Mecánica, Universidad Privada Boliviana, Cochabamba
[4] Departamento de Sistemas de Control, Universidad de Los Andes, Mérida
[5] Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing
[6] Universidad Pontificia Bolivariana, Medellín
关键词
fault diagnosis; random forest; spur gearbox; wavelet packet decomposition;
D O I
10.1007/s11465-015-0348-8
中图分类号
学科分类号
摘要
This paper addresses the development of a random forest classifier for the multi-class fault diagnosis in spur gearboxes. The vibration signal’s condition parameters are first extracted by applying the wavelet packet decomposition with multiple mother wavelets, and the coefficients’ energy content for terminal nodes is used as the input feature for the classification problem. Then, a study through the parameters’ space to find the best values for the number of trees and the number of random features is performed. In this way, the best set of mother wavelets for the application is identified and the best features are selected through the internal ranking of the random forest classifier. The results show that the proposed method reached 98.68% in classification accuracy, and high efficiency and robustness in the models. © 2015, Higher Education Press and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:277 / 286
页数:9
相关论文
共 50 条
  • [1] Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition
    Diego CABRERA
    Fernando SANCHO
    RenVinicio SNCHEZ
    Grover ZURITA
    Mariela CERRADA
    Chuan LI
    Rafael EVSQUEZ
    [J]. Frontiers of Mechanical Engineering., 2015, 10 (03) - 286
  • [2] Spur Bevel Gearbox Fault Diagnosis Using Wavelet Packet Transform for Feature Extraction
    Huang, Wentao
    Niu, Peilu
    Lu, Xiaojun
    [J]. PRACTICAL APPLICATIONS OF INTELLIGENT SYSTEMS, ISKE 2013, 2014, 279 : 155 - 165
  • [3] Wavelet Packet Decomposition-Based Multiscale CNN for Fault Diagnosis of Wind Turbine Gearbox
    Huang, Dajian
    Zhang, Wen-An
    Guo, Fanghong
    Liu, Weijiang
    Shi, Xiaoming
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 443 - 453
  • [4] Application of lifting wavelet and random forest in compound fault diagnosis of gearbox
    Chen Tang
    Cui Yulian
    Feng Fuzhou
    Wu Chunzhi
    [J]. YOUNG SCIENTISTS FORUM 2017, 2018, 10710
  • [5] Spur bevel gearbox fault diagnosis using wavelet packet transform and rough set theory
    Huang, Wentao
    Kong, Fanzhao
    Zhao, Xuezeng
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2018, 29 (06) : 1257 - 1271
  • [6] Spur bevel gearbox fault diagnosis using wavelet packet transform and rough set theory
    Wentao Huang
    Fanzhao Kong
    Xuezeng Zhao
    [J]. Journal of Intelligent Manufacturing, 2018, 29 : 1257 - 1271
  • [7] Spur Bevel Gearbox Fault Diagnosis Based on Wavelet Packet Transform for Feature Extraction and Flow Graph Data Mining
    Huang, Wentao
    Niu, Peilu
    Liu, Yinfeng
    Wang, Weijie
    [J]. MATERIALS PROCESSING AND MANUFACTURING III, PTS 1-4, 2013, 753-755 : 2297 - 2302
  • [8] Fault diagnosis of gearbox based on wavelet packet transform and CLSPSO-BP
    Xiao, Maohua
    Zhang, Wei
    Zhao, Yuanfang
    Xu, Xiaomei
    Zhou, Shufang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (08) : 11519 - 11535
  • [9] Fault diagnosis of gearbox based on wavelet packet transform and CLSPSO-BP
    Maohua Xiao
    Wei Zhang
    Yuanfang Zhao
    Xiaomei Xu
    Shufang Zhou
    [J]. Multimedia Tools and Applications, 2022, 81 : 11519 - 11535
  • [10] Compound Fault Diagnosis of Gearbox Based on Wavelet Packet Transform and Sparse Representation Classification
    Yu Fa-jun
    Liu Yi-cai
    Zhao Qi-feng
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 5339 - 5343