Selective laser melting of high aspect ratio 3D nickel-titanium structures two way trained for MEMS applications

被引:82
|
作者
Clare A.T. [1 ]
Chalker P.R. [1 ]
Davies S. [1 ]
Sutcliffe C.J. [1 ]
Tsopanos S. [1 ]
机构
[1] Department of Engineering, Materials Science and Engineering, University of Liverpool, Liverpool L69 3GH, Brownlow Hill
来源
Int. J. Mech. Mater. Des. | 2008年 / 2卷 / 181-187期
基金
英国工程与自然科学研究理事会;
关键词
Differential scanning calorimetry; MEMS; Micro actuators; Micro machining; NiTi alloys; Selective laser melting; Shape memory effect SME;
D O I
10.1007/s10999-007-9032-4
中图分类号
学科分类号
摘要
Selective laser melting has been used to build high aspect ratio, three-dimensional NiTi micro-electro-mechanical components. Cantilever beams manufactured in this way have been two-way trained and actuated by ohmic heating demonstrating the suitability of the process for applications in micro-electromechanical technologies. The influence of laser dwell time and raster pitch on the density of NiTi shape memory alloy parts and the resolvable feature sizes achievable are discussed. The shape memory effect properties of solid parts produced by selective laser melting are also reported in contrast to those properties exhibited by NiTi alloys resulting from other processes. © 2007 Springer Science+Business Media B.V.
引用
收藏
页码:181 / 187
页数:6
相关论文
共 50 条
  • [1] Selective laser melting of high aspect ratio 3D nickel-titanium structures for MEMS applications.
    Chalker, P. R.
    Clare, A.
    Davies, S.
    Sutcliffe, C. J.
    Tsopanos, S.
    SURFACE ENGINEERING FOR MANUFACTURING APPLICATIONS, 2006, 890 : 93 - +
  • [2] In vivo biocompatibility evaluation of 3D-printed nickel-titanium fabricated by selective laser melting
    Naujokat, Hendrik
    Goekkaya, Ali Ihsan
    Acil, Yahya
    Loger, Klaas
    Klueter, Tim
    Fuchs, Sabine
    Wiltfang, Joerg
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2022, 33 (02)
  • [3] Contacts on high aspect ratio 3D structures
    Neumann, R.
    Al-Suleiman, M.
    Erenburg, M.
    Ledig, J.
    Wehmann, H. -H.
    Waag, A.
    MICROELECTRONIC ENGINEERING, 2011, 88 (11) : 3224 - 3226
  • [4] The electrodeposition of cobalt-nickel-iron high aspect ratio thick film structures for magnetic MEMS applications
    Sverdlov, Y
    Rosenberg, Y
    Rozenberg, YI
    Zmood, R
    Erlich, R
    Natan, S
    Shacham-Diamand, Y
    MICROELECTRONIC ENGINEERING, 2004, 76 (1-4) : 258 - 265
  • [5] 3D laser shock peening as a way to improve geometrical accuracy in selective laser melting
    Nikola Kalentics
    Andreas Burn
    Michael Cloots
    Roland E. Logé
    The International Journal of Advanced Manufacturing Technology, 2019, 101 : 1247 - 1254
  • [6] 3D laser shock peening as a way to improve geometrical accuracy in selective laser melting
    Kalentics, Nikola
    Burn, Andreas
    Cloots, Michael
    Loge, Roland E.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (5-8): : 1247 - 1254
  • [7] Research Progress on Selective Laser Melting 3D Printing of Titanium Matrix Composites
    Yang, Guang
    Wang, Bingyu
    Zhao, Shuo
    Wang, Wei
    Li, Changfu
    Wang, Xiangming
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2021, 50 (07): : 2641 - 2651
  • [8] Research Progress on Selective Laser Melting 3D Printing of Titanium Matrix Composites
    Yang Guang
    Wang Bingyu
    Zhao Shuo
    Wang Wei
    Li Changfu
    Wang Xiangming
    RARE METAL MATERIALS AND ENGINEERING, 2021, 50 (07) : 2641 - 2651
  • [9] 3D Chiral Energy-Absorbing Structures with a High Deformation Recovery Ratio Fabricated via Selective Laser Melting of the NiTi Alloy
    Li, Xuyang
    Wang, Hao
    Sun, Lianfa
    Wang, Xiaoyue
    Pan, Yang
    Zhou, Meng
    Guo, Xiaogang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (46) : 53746 - 53754
  • [10] In vivo biocompatibility evaluation of 3D-printed nickel–titanium fabricated by selective laser melting
    Hendrik Naujokat
    Ali Ihsan Gökkaya
    Yahya Açil
    Klaas Loger
    Tim Klüter
    Sabine Fuchs
    Jörg Wiltfang
    Journal of Materials Science: Materials in Medicine, 2022, 33