Constructed wetlands are recognized as a means to improve water quality through nitrogen (N) removal. Water-quality concerns in the N-sensitive Neuse River Estuary, North Carolina, USA, have necessitated enactment of a 30% reduction, in nitrogen (N) loading accompanied by an N loading cap. Open Grounds Farm (OGF) is an 18,220-ha row-crop farm located in the lower Neuse River Estuary. In 1999, a wetland was constructed to remove nutrients (N and Phosphorus), sediment, and pathogens in surface water draining from a 971-ha area of OGF. The wetland site is 5.1 ha of alternating segments of emergent marsh and open water. Nitrogen removal from the wetland via denitrification was measured monthly by analysis of dissolved nitrogen, oxygen, and argon in laboratory incubated sediment chambers using a Membrane Inlet Mass Spectrometer (MIMS). Nitrate concentration appeared to be the primary variable controlling denitrification rates. Spatial and temporal variability in rates of denitrification were investigated, including pre- and post- N loading events. Following rainfall, there was a 400% increase in denitrification rates in response to increased inorganic N loading. Nutrient loads entering and leaving the wetland were determined from nutrient analysis (twice monthly), intensive precipitation event sampling, and continuous flow measurements at the entrance and exit of the, wetland. Results indicated that the wetland received variable N loading (1-1,720 kg N per month) and had variable N removal via denitrification (8-81 kg N per month). Denitrification was an important mechanism for N removal.