New type parallelogram laws in Banach spaces and geodesic spaces with curvature bounded above

被引:0
|
作者
Yasunori Kimura
Shuta Sudo
机构
[1] Toho University,Department of Information Science
来源
关键词
52A21; 52A55;
D O I
暂无
中图分类号
学科分类号
摘要
The parallelogram law characterizes a part of the structure of Hilbert spaces. To hold the parallelogram law by the norm, reasonably good conditions are required for Banach spaces. This paper proposes new type parallelogram laws with bifunctions on Banach spaces and geodesic spaces, respectively.
引用
收藏
页码:389 / 412
页数:23
相关论文
共 50 条
  • [1] New type parallelogram laws in Banach spaces and geodesic spaces with curvature bounded above
    Kimura, Yasunori
    Sudo, Shuta
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (02) : 389 - 412
  • [2] Comparison theorems for curves of bounded geodesic curvature in metric spaces of curvature bounded above
    Alexander, SB
    Bishop, RL
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1996, 6 (01) : 67 - 86
  • [3] A SPHERICALLY VICINAL MAPPING ON GEODESIC SPACES WITH CURVATURE BOUNDED ABOVE
    Kajimura, Takuto
    Kimura, Yasunori
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (01): : 384 - 393
  • [4] Duality of the weak parallelogram laws on Banach spaces
    Cheng, Raymond
    Harris, Charles B.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 404 (01) : 64 - 70
  • [5] WEAK PARALLELOGRAM LAWS FOR BANACH-SPACES
    BYNUM, WL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A175 - A175
  • [6] ASYMPTOTIC BEHAVIOR OF RESOLVENTS AT ZERO ON COMPLETE GEODESIC SPACES WITH A CURVATURE BOUNDED ABOVE
    Kimura, Yasunori
    Shindo, Keisuke
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (09) : 2043 - 2048
  • [7] Convergence analysis of modified iterative approaches in geodesic spaces with curvature bounded above
    Thounthong, Phatiphat
    Pakkaranang, Nuttapol
    Saipara, Phachara
    Phairatchatniyom, Pawicha
    Kumam, Poom
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (17) : 5929 - 5943
  • [8] Two modified proximal point algorithms in geodesic spaces with curvature bounded above
    Yasunori Kimura
    Fumiaki Kohsaka
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 83 - 104
  • [9] Two modified proximal point algorithms in geodesic spaces with curvature bounded above
    Kimura, Yasunori
    Kohsaka, Fumiaki
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (01) : 83 - 104
  • [10] Weak parallelogram laws on banach spaces and applications to prediction
    R. Cheng
    W. T. Ross
    Periodica Mathematica Hungarica, 2015, 71 : 45 - 58