Global Fourier Integral Operators in the Plane and the Square Function

被引:0
|
作者
Ramesh Manna
P. K. Ratnakumar
机构
[1] National Institute of Science Education and Research Bhubaneswar,School of Mathematical Sciences
[2] An OCC of Homi Bhabha National Institute,undefined
[3] Harish-Chandra Research Institute,undefined
[4] A CI of Homi Bhaba National Institute,undefined
关键词
Fourier integral operator; Wave front set; Local smoothing; Square function; Primary 35S30; Secondary 42B25; 42B37;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the local smoothing estimate for general Fourier integral operators with phase function of the form ϕ(x,t,ξ)=x·ξ+tq(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (x,t,\xi )=x\cdot \xi + t \, q(\xi )$$\end{document}, with q∈C∞(R2\{0})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in C^\infty ( {\mathbb {R}}^2 \setminus \{0\} )$$\end{document}, homogeneous of degree one, and amplitude functions in the symbol class of order m≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \le 0$$\end{document}. The result is global in the space variable, and also improves our previous work in this direction (Manna et al (in: Georgiev et al., Advances in harmonic analysis and partial differential equations, Trends in Mathematics. Birkhäuser, Cham, pp. 1–35, 2020)). The approach involves a reduction to operators with amplitude function depending only on the covariable, and a new estimate for square function based on angular decomposition.
引用
收藏
相关论文
共 50 条
  • [1] Global Fourier Integral Operators in the Plane and the Square Function
    Manna, Ramesh
    Ratnakumar, P. K.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (02)
  • [2] Square function estimates and local smoothing for Fourier integral operators
    Gao, Chuanwei
    Liu, Bochen
    Miao, Changxing
    Xi, Yakun
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 126 (06) : 1923 - 1960
  • [3] On the global boundedness of Fourier integral operators
    Elena Cordero
    Fabio Nicola
    Luigi Rodino
    [J]. Annals of Global Analysis and Geometry, 2010, 38 : 373 - 398
  • [4] On the global boundedness of Fourier integral operators
    Cordero, Elena
    Nicola, Fabio
    Rodino, Luigi
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (04) : 373 - 398
  • [5] DEGENERATE FOURIER INTEGRAL-OPERATORS IN THE PLANE
    SEEGER, A
    [J]. DUKE MATHEMATICAL JOURNAL, 1993, 71 (03) : 685 - 745
  • [6] Square function inequality for a class of Fourier integral operators satisfying cinematic curvature conditions
    Gao, Chuanwei
    Miao, Changxing
    Yang, Jianwei-Urbain
    [J]. FORUM MATHEMATICUM, 2020, 32 (06) : 1375 - 1394
  • [7] On Local and Global Regularity of Fourier Integral Operators
    Ruzhansky, Michael
    [J]. NEW DEVELOPMENTS IN PSEUDO-DIFFERENTIAL OPERATORS, 2009, 189 : 185 - 200
  • [8] Global Fourier integral operators and semiclassical asymptotics
    Laptev, A
    Sigal, IM
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2000, 12 (05) : 749 - 766
  • [9] GLOBAL Lp CONTINUITY OF FOURIER INTEGRAL OPERATORS
    Coriasco, Sandro
    Ruzhansky, Michael
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (05) : 2575 - 2596
  • [10] Global boundedness of a class of multilinear Fourier integral operators
    Rodriguez-Lopez, Salvador
    Rule, David
    Staubach, Wolfgang
    [J]. FORUM OF MATHEMATICS SIGMA, 2021, 9