Singular Integral Operator Involving Higher Order Lipschitz Classes

被引:0
|
作者
Juan Bory-Reyes
Lianet De la Cruz-Toranzo
Ricardo Abreu-Blaya
机构
[1] Instituto Politécnico Nacional,Facultad de Informática y Matemática
[2] SEPI-ESIME-ZAC,undefined
[3] Universidad de Holguín,undefined
来源
关键词
Singular integral operator; Lipschitz classes; polyanalytic functions; 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate a singular integral operator with polyanalytic Cauchy kernel. In particular, we will prove that the higher order Lipschitz classes (of order 1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\alpha $$\end{document}) behave invariant under the action of that operator.
引用
收藏
相关论文
共 50 条
  • [1] Singular Integral Operator Involving Higher Order Lipschitz Classes
    Bory-Reyes, Juan
    De la Cruz-Toranzo, Lianet
    Abreu-Blaya, Ricardo
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [2] Lipschitz Norm Estimate for a Higher Order Singular Integral Operator
    Santiesteban, Tania Rosa Gomez
    Blaya, Ricardo Abreu
    Gomez, Juan Carlos Hernandez
    Santiesteban, Jose Luis Sanchez
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2024, 34 (03)
  • [3] Cauchy Integral Operators Involving Higher Order Lipschitz Classes in the Poly-Analytic Function Theory
    Abreu-Blaya, Ricardo
    De la Cruz-Toranzo, Lianet
    Gomez-Santiesteban, Tania R.
    Ramirez-Leyva, Yulieth
    Bory-Reyes, Juan
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (02): : 253 - 260
  • [4] Cauchy Integral Operators Involving Higher Order Lipschitz Classes in the Poly-Analytic Function Theory
    Ricardo Abreu-Blaya
    Lianet De la Cruz-Toranzo
    Tania R. Gómez-Santiesteban
    Yulieth Ramírez-Leyva
    Juan Bory-Reyes
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 253 - 260
  • [5] On the Plemelj-Privalov theorem in Clifford analysis involving higher order Lipschitz classes
    De la Cruz Toranzo, Lianet
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 480 (02)
  • [6] Hilbert and Poincaré-Bertrand Formulas in Polyanalytic Function Theory Involving Higher Order Lipschitz Classes
    Juan Bory-Reyes
    Ricardo Abreu-Blaya
    Marco Antonio Pérez-de la Rosa
    Baruch Schneider
    Complex Analysis and Operator Theory, 2021, 15
  • [7] A Bimonogenic Cauchy Transform on Higher Order Lipschitz Classes
    De la Cruz Toranzo, Lianet
    Moreno Garcia, Arsenio
    Moreno Garcia, Tania
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (01)
  • [8] A Bimonogenic Cauchy Transform on Higher Order Lipschitz Classes
    Lianet De la Cruz Toranzo
    Arsenio Moreno García
    Tania Moreno García
    Ricardo Abreu Blaya
    Juan Bory Reyes
    Mediterranean Journal of Mathematics, 2019, 16
  • [9] Compactness of embedding of generalized higher order Lipschitz classes
    Tamayo Castro, Carlos Daniel
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (04) : 1719 - 1727
  • [10] Compactness of embedding of generalized higher order Lipschitz classes
    Carlos Daniel Tamayo Castro
    Ricardo Abreu Blaya
    Juan Bory Reyes
    Analysis and Mathematical Physics, 2019, 9 : 1719 - 1727