Sensitivity of the Lorenz energy cycle of the global ocean

被引:0
|
作者
John Ssebandeke
Jin-Song von Storch
Nils Brüggemann
机构
[1] Max-Planck-Institute for Meteorology,Institute of Oceanography
[2] University of Hamburg,undefined
来源
Ocean Dynamics | 2024年 / 74卷
关键词
Lorenz energy cycle (LEC); ERA5; NCEP/NCAR; ICON-O; MPI-OM;
D O I
暂无
中图分类号
学科分类号
摘要
We re-examine the Lorenz energy cycle (LEC) for the global ocean by assessing its sensitivity to model and forcing differences. We do so by comparing LECs derived from two simulations based on different eddy-rich ocean models, ICON-O and MPI-OM, both driven by NCEP/NCAR reanalysis, and by comparing LECs derived from two simulations generated using ICON-O model but driven by two different reanalyses, NCEP/NCAR and ERA5. Regarding model difference, we find weaker eddy kinetic energy, ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document}, in the ICON-O simulation than in the MPI-OM simulation. We attribute this to the higher horizontal resolution of MPI-OM in the Southern Ocean. The weaker ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} in ICON-O is not caused by the lack of eddy available potential energy, pe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_e$$\end{document}, but by the strong dissipation of pe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_e$$\end{document} and the resulting weak conversion from pe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_e$$\end{document} to ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document}. Regarding forcing difference, we find that considerably more mechanical energy is generated by the ERA5 forcing, which has a higher spatial-temporal resolution compared to the NCEP/NCAR forcing. In particular, the generation of ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document}, which also contains the resolved part of the internal wave spectrum, is enhanced by about 1 TW (40%). However, the dominance of the baroclinic and the barotropic pathways forces the enhanced generation of ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} to be balanced by an enhanced dissipation in the surface layer. The gross features of LEC are insensitive to both model and forcing differences, picturing the ocean as an inefficient “windmill” that converts only a small portion of the inputted mechanical energy into the interior mean and transient circulations.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 50 条
  • [1] Sensitivity of the Lorenz energy cycle of the global ocean
    Ssebandeke, John
    von Storch, Jin-Song
    Brueggemann, Nils
    OCEAN DYNAMICS, 2024, 74 (01) : 1 - 16
  • [2] Correction to: Sensitivity of the Lorenz energy cycle of the global ocean
    John Ssebandeke
    Jin-Song von Storch
    Nils Brüggemann
    Ocean Dynamics, 2024, 74 (1) : 17 - 17
  • [3] Sensitivity of the Upper Mesosphere to the Lorenz Energy Cycle of the Troposphere
    Becker, Erich
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2009, 66 (03) : 647 - 666
  • [4] On the response of the Lorenz energy cycle for the Southern Ocean to intensified westerlies
    Wu, Yang
    Wang, Zhaomin
    Liu, Chengyan
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2017, 122 (03) : 2465 - 2493
  • [5] Convection in Lorenz's global energy cycle with the ECMWF model
    Steinheimer, Martin
    Hantel, Michael
    Bechtold, Peter
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2008, 60 (05) : 1001 - 1022
  • [6] Lorenz energy cycle of the global atmosphere based on reanalysis datasets
    Li, Liming
    Ingersoll, Andrew P.
    Jiang, Xun
    Feldman, Daniel
    Yung, Yuk L.
    GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (16)
  • [7] Energy cycle for the Lorenz attractor
    Pelino, Vinicio
    Maimone, Filippo
    Pasini, Antonello
    CHAOS SOLITONS & FRACTALS, 2014, 64 : 67 - 77
  • [8] An Estimate of the Lorenz Energy Cycle for the World Ocean Based on the 1/10° STORM/NCEP Simulation
    von Storch, Jin-Song
    Eden, Carsten
    Fast, Irina
    Haak, Helmuth
    Hernandez-Deckers, Daniel
    Maier-Reimer, Ernst
    Marotzke, Jochem
    Stammer, Detlef
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2012, 42 (12) : 2185 - 2205
  • [9] Evolution of the Lorenz Energy Cycle in the Intertropical Convergence Zone in the South American Sector of the Atlantic Ocean
    Da Silva, Ligia A.
    Satyamurty, Prakki
    JOURNAL OF CLIMATE, 2013, 26 (10) : 3466 - 3481
  • [10] Examination of the global lorenz energy cycle using MERRA and NCEP-reanalysis 2
    Yeon-Hee Kim
    Maeng-Ki Kim
    Climate Dynamics, 2013, 40 : 1499 - 1513