Positive Radial Solutions for Elliptic Equations with Nonlinear Gradient Terms on the Unit Ball

被引:0
|
作者
Yongxiang Li
机构
[1] Northwest Normal University,Department of Mathematics
来源
关键词
Elliptic equation; nonlinear gradient term; positive radial solution; lower and upper solutions; 35J25; 35J60; 47H11; 47N20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the existence of positive radial solutions of the elliptic equation with nonlinear gradient term -Δu=f(|x|,u,|∇u|),x∈Ω,u|∂Ω=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u = f(|x|,\,u,\,|\nabla u|)\,,\qquad x\in \Omega \,,\qquad \qquad \\ u|_{\partial \Omega }=0\,, \end{array}\right. \end{aligned}$$\end{document}where Ω={x∈RN:|x|<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega =\{x\in \mathbb {R}^N:\;|x|<1\}$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, f:[0,1]×R+×R+→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:[0,\,1]\times \mathbb {R}^+\times \mathbb {R}^+ \rightarrow \mathbb {R}$$\end{document} are continuous, R+=[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^+=[0,\,\infty )$$\end{document}. Under some inequality conditions, the existence results of positive radial solution are obtained. The proofs of the main results are based on the method of lower and upper solutions and truncating function technique.
引用
收藏
相关论文
共 50 条