Transverse intersections between invariant manifolds of doubly hyperbolic invariant tori, via the Poincaré-Mel’nikov method

被引:0
|
作者
A. Delshams
P. Gutiérrez
O. Koltsova
J. R. Pacha
机构
[1] Universitat Politècnica de Catalunya,Dep. de Matemàtica Aplicada I
[2] Imperial College London,Department of Mathematics
来源
关键词
hyperbolic KAM tori; transverse homoclinic orbits; Melnikov method; 37J40; 37C29; 70H08;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a perturbation of an integrable Hamiltonian system having an equilibrium point of elliptic-hyperbolic type, having a homoclinic orbit. More precisely, we consider an (n + 2)-degree-of-freedom near integrable Hamiltonian with n centers and 2 saddles, and assume that the homoclinic orbit is preserved under the perturbation. On the center manifold near the equilibrium, there is a Cantorian family of hyperbolic KAM tori, and we study the homoclinic intersections between the stable and unstable manifolds associated to such tori. We establish that, in general, the manifolds intersect along transverse homoclinic orbits. In a more concrete model, such homoclinic orbits can be detected, in a first approximation, from nondegenerate critical points of a Mel’nikov potential. We provide bounds for the number of transverse homoclinic orbits using that, in general, the potential will be a Morse function (which gives a lower bound) and can be approximated by a trigonometric polynomial (which gives an upper bound).
引用
收藏
页码:222 / 236
页数:14
相关论文
共 8 条
  • [1] Transverse intersections between invariant manifolds of doubly hyperbolic invariant tori, via the Poincar,-Mel'nikov method
    Delshams, A.
    Gutierrez, P.
    Koltsova, O.
    Pacha, J. R.
    REGULAR & CHAOTIC DYNAMICS, 2010, 15 (2-3): : 222 - 236
  • [2] Differentiable invariant manifolds for partially hyperbolic tori and a lambda lemma
    Fontich, E
    Martín, P
    NONLINEARITY, 2000, 13 (05) : 1561 - 1593
  • [3] Parameterization Method for Computing Quasi-periodic Reducible Normally Hyperbolic Invariant Tori
    Canadell, Marta
    Haro, Alex
    ADVANCES IN DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 4 : 85 - 94
  • [4] Invariant tori via higher order averaging method: existence, regularity, convergence, stability, and dynamics
    Novaes, Douglas D.
    Pereira, Pedro C. C. R.
    MATHEMATISCHE ANNALEN, 2024, 389 (01) : 543 - 590
  • [5] Invariant tori via higher order averaging method: existence, regularity, convergence, stability, and dynamics
    Douglas D. Novaes
    Pedro C. C. R. Pereira
    Mathematische Annalen, 2024, 389 : 543 - 590
  • [6] Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold
    Pinho, Flavio Augusto Xavier Carneiro
    Amabili, Marco
    Del Prado, Zenon Jose Guzman Nunez
    da Silva, Frederico Martins Alves
    NONLINEAR DYNAMICS, 2024, 112 (23) : 20677 - 20701
  • [7] Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method
    Sevryuk, Mikhail B.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 18 (2-3) : 569 - 595
  • [8] Invariant manifolds of a non-autonomous quasi-bicircular problem computed via the parameterization method
    Le Bihan, B.
    Masdemont, J. J.
    Gomez, G.
    Lizy-Destrez, S.
    NONLINEARITY, 2017, 30 (08) : 3040 - 3075