Covariant Derivative of the Curvature Tensor of Kenmotsu Manifolds

被引:0
|
作者
Vahid Pirhadi
机构
[1] University of Kashan,Department of Pure Mathematics, Faculty of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2022年 / 48卷
关键词
Kenmotsu manifolds; -Einstein manifolds; Curvature-like tensors; Chaki ; -pseudo-symmetric manifolds; 53D15; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define a (1, 3)-tensor field T(X, Y)Z on Kenmotsu manifolds and give a necessary and sufficient condition for T to be a curvature-like tensor. Next, we present some properties related to the curvature-like tensor T and prove that M2m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{2m+1}$$\end{document} is an η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein–Kenmotsu manifold if and only if ∑j=1mT(φ(ej),ej)X=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum ^{m}_{j=1}T( \varphi (e_j), e_j) X = 0$$\end{document}. Besides, we define a (1, 4)-tensor field t on the Kenmotsu manifold M which determines when M is a Chaki T-pseudo-symmetric manifold. Then, we obtain a formula for the covariant derivative of the curvature tensor of Kenmotsu manifold M. We also find some conditions under which an η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein–Kenmotsu manifold is a Chaki T-pseudo-symmetric. Finally, we give an example to verify our results and prove that every three-dimensional Kenmotsu manifold is a generalized pseudo-symmetric manifold.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 50 条
  • [1] Covariant Derivative of the Curvature Tensor of Kenmotsu Manifolds
    Pirhadi, Vahid
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (01) : 1 - 18
  • [2] On the conformal curvature tensor of ϵ-Kenmotsu manifolds
    Haseeb, Abdul (malikhaseeb80@gmail.com), 2018, Forum-Editrice Universitaria Udinese SRL
  • [3] Covariant derivative of the curvature tensor of pseudo-Kahlerian manifolds
    Galaev, Anton S.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 51 (03) : 245 - 265
  • [4] On the Conharmonic Curvature Tensor of Kenmotsu Manifolds
    Asghari, Nader
    Taleshian, Abolfazl
    THAI JOURNAL OF MATHEMATICS, 2014, 12 (03): : 525 - 536
  • [5] Covariant derivative of the curvature tensor of pseudo-Kählerian manifolds
    Anton S. Galaev
    Annals of Global Analysis and Geometry, 2017, 51 : 245 - 265
  • [6] ON W9-CURVATURE TENSOR IN KENMOTSU MANIFOLDS
    Prasad, Rajendra
    Alam, Mohammad Mahboob
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2024, 23 (3-4): : 146 - 158
  • [7] ON THE CONFORMAL CURVATURE TENSOR OF epsilon-KENMOTSU MANIFOLDS
    Haseeb, Abdul
    Ahmad, Mobin
    Rizvi, Sheeba
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 656 - 670
  • [8] ON GENERALIZED PROJECTIVE CURVATURE TENSOR OF PARA-KENMOTSU MANIFOLDS
    Raghuwanshi, Teerathram
    Pandey, Giteshwari
    Pandey, Manoj Kumar
    Goyal, Anil
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 383 - 394
  • [9] ON THE CONHARMONIC CURVATURE TENSOR OF KENMOTSU MANIFOLDS WITH GENERALIZED TANAKA-WEBSTER CONNECTION
    Prakasha, D. G.
    Hadimani, B. S.
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 491 - 503
  • [10] Cotton tensor, Bach tensor and Kenmotsu manifolds
    Amalendu Ghosh
    Afrika Matematika, 2020, 31 : 1193 - 1205