SAVER: gene expression recovery for single-cell RNA sequencing

被引:0
|
作者
Mo Huang
Jingshu Wang
Eduardo Torre
Hannah Dueck
Sydney Shaffer
Roberto Bonasio
John I. Murray
Arjun Raj
Mingyao Li
Nancy R. Zhang
机构
[1] University of Pennsylvania,Department of Statistics, The Wharton School
[2] University of Pennsylvania,Perelman School of Medicine
[3] University of Pennsylvania,Department of Bioengineering
[4] Perelman School of Medicine,Department of Genetics
[5] University of Pennsylvania,Department of Cell and Developmental Biology
[6] Perelman School of Medicine,Department of Biostatistics and Epidemiology
[7] University of Pennsylvania,undefined
[8] Perelman School of Medicine,undefined
[9] University of Pennsylvania,undefined
来源
Nature Methods | 2018年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In single-cell RNA sequencing (scRNA-seq) studies, only a small fraction of the transcripts present in each cell are sequenced. This leads to unreliable quantification of genes with low or moderate expression, which hinders downstream analysis. To address this challenge, we developed SAVER (single-cell analysis via expression recovery), an expression recovery method for unique molecule index (UMI)-based scRNA-seq data that borrows information across genes and cells to provide accurate expression estimates for all genes.
引用
收藏
页码:539 / 542
页数:3
相关论文
共 50 条
  • [1] SAVER: gene expression recovery for single-cell RNA sequencing
    Huang, Mo
    Wang, Jingshu
    Torre, Eduardo
    Dueck, Hannah
    Shaffer, Sydney
    Bonasio, Roberto
    Murray, John I.
    Raj, Arjun
    Li, Mingyao
    Zhang, Nancy R.
    [J]. NATURE METHODS, 2018, 15 (07) : 539 - +
  • [2] Gene expression distribution deconvolution in single-cell RNA sequencing
    Wang, Jingshu
    Huang, Mo
    Torre, Eduardo
    Dueck, Hannah
    Shaffer, Sydney
    Murray, John
    Raj, Arjun
    Li, Mingyao
    Zhang, Nancy R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (28) : E6437 - E6446
  • [3] Differential gene expression analysis in single-cell RNA sequencing data
    Wang, Tianyu
    Nabavi, Sheida
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 202 - 207
  • [4] GENE EXPRESSION Single-cell RNA sequencing of collecting duct cells
    Allison, Susan J.
    [J]. NATURE REVIEWS NEPHROLOGY, 2018, 14 (01) : 3 - 3
  • [5] bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data
    Tang, Wenhao
    Bertaux, Francois
    Thomas, Philipp
    Stefanelli, Claire
    Saint, Malika
    Marguerat, Samuel
    Shahrezaei, Vahid
    [J]. BIOINFORMATICS, 2020, 36 (04) : 1174 - 1181
  • [6] VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies
    Mengjie Chen
    Xiang Zhou
    [J]. Genome Biology, 19
  • [7] VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies
    Chen, Mengjie
    Zhou, Xiang
    [J]. GENOME BIOLOGY, 2018, 19
  • [8] Single-cell RNA sequencing reveals gene expression profiling of ischemia reperfusion injury
    Wang, L.
    He, S.
    Xu, J.
    Guo, Z.
    He, X.
    [J]. TRANSPLANTATION, 2021, 105 (08) : 65 - 66
  • [9] Single-Cell RNA Sequencing Reveals Gene Expression Profiling of Ischemia Reperfusion Injury
    Wang, L.
    He, S.
    Xu, J.
    Guo, Z.
    He, X.
    [J]. AMERICAN JOURNAL OF TRANSPLANTATION, 2020, 20 : 656 - 657
  • [10] SCALE: modeling allele-specific gene expression by single-cell RNA sequencing
    Yuchao Jiang
    Nancy R. Zhang
    Mingyao Li
    [J]. Genome Biology, 18