Forward-Backward Splitting with Bregman Distances

被引:39
|
作者
Van Nguyen Q. [1 ,2 ]
机构
[1] Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay dist, Hanoi
[2] Laboratory for Information Theory and Inference Systems (LIONS), École Polytechnique Fédérale de Lausanne, Lausanne
关键词
Banach space; Bregman distance; Forward-backward algorithm; Legendre function; Multivariate minimization; Variable quasi-Bregman monotonicity;
D O I
10.1007/s10013-016-0238-3
中图分类号
学科分类号
摘要
We propose a forward-backward splitting algorithm based on Bregman distances for composite minimization problems in general reflexive Banach spaces. The convergence is established using the notion of variable quasi-Bregman monotone sequences. Various examples are discussed, including some in Euclidean spaces, where new algorithms are obtained. © 2017, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore.
引用
收藏
页码:519 / 539
页数:20
相关论文
共 50 条
  • [1] Bregman Forward-Backward Operator Splitting
    Bui, Minh N.
    Combettes, Patrick L.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2021, 29 (03) : 583 - 603
  • [2] Bregman Forward-Backward Operator Splitting
    Minh N. Bùi
    Patrick L. Combettes
    [J]. Set-Valued and Variational Analysis, 2021, 29 : 583 - 603
  • [3] A forward-backward Bregman splitting scheme for regularized distributed optimization problems
    Xu, Jinming
    Zhu, Shanying
    Soh, Yeng Chai
    Xie, Lihua
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 1093 - 1098
  • [4] A Generalized Forward-Backward Splitting
    Raguet, Hugo
    Fadili, Jalal
    Peyre, Gabriel
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (03): : 1199 - 1226
  • [5] Convergence rates in forward-backward splitting
    Chen, GHG
    Rockafellar, RT
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) : 421 - 444
  • [6] FORWARD-BACKWARD SPLITTING WITH DEVIATIONS FOR MONOTONE INCLUSIONS
    Sadeghi H.
    Banert S.
    Giselsson P.
    [J]. Applied Set-Valued Analysis and Optimization, 2024, 6 (02): : 113 - 135
  • [7] A RELAXATION OF THE PARAMETER IN THE FORWARD-BACKWARD SPLITTING METHOD
    Jia, Zehui
    Cai, Xingju
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (04): : 665 - 681
  • [8] Nonlinear Forward-Backward Splitting with Momentum Correction
    Morin, Martin
    Banert, Sebastian
    Giselsson, Pontus
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2023, 31 (04)
  • [9] On the convergence of the forward-backward splitting method with linesearches
    Bello Cruz, Jose Yunier
    Nghia, Tran T. A.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (06): : 1209 - 1238
  • [10] Signal recovery by proximal forward-backward splitting
    Combettes, PL
    Wajs, VR
    [J]. MULTISCALE MODELING & SIMULATION, 2005, 4 (04): : 1168 - 1200