Bayesian Estimation for the Extended t-process Regression Models with Independent Errors

被引:0
|
作者
Zhanfeng Wang
Kai Li
机构
[1] University of Science and Technology of China,Department of Statistics and Finance, Management School
关键词
Extended ; -process regression; Functional data; Robustness; Monte Carlo EM algorithm; 62G05; 62G35;
D O I
暂无
中图分类号
学科分类号
摘要
The extended t-process regression model is developed to robustly model functional data with outlier functional curves. This paper applies Bayesian estimation to propose an estimation procedure for the model with independent errors. A Monte Carlo EM method is built to estimate parameters involved in the model. Simulation studies and real examples show the proposed method performs well against outliers.
引用
收藏
页码:261 / 272
页数:11
相关论文
共 50 条
  • [1] Bayesian Estimation for the Extended t-process Regression Models with Independent Errors
    Wang, Zhanfeng
    Li, Kai
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2021, 9 (03) : 261 - 272
  • [2] Extended t-process regression models
    Wang, Zhanfeng
    Shi, Jian Qing
    Lee, Youngjo
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 189 : 38 - 60
  • [3] A robust estimation for the extended t-process regression model
    Wang, Zhanfeng
    Li, Kai
    Shi, Jian Qing
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 157
  • [4] Composite T-Process Regression Models
    Wang, Zhanfeng
    Lv, Yuewen
    Wu, Yaohua
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (02) : 307 - 323
  • [5] Composite T-Process Regression Models
    Zhanfeng Wang
    Yuewen Lv
    Yaohua Wu
    [J]. Communications in Mathematics and Statistics, 2023, 11 : 307 - 323
  • [6] A general robust t-process regression model
    Wang, Zhanfeng
    Noh, Maengseok
    Lee, Youngjo
    Shi, Jian Qing
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 154
  • [7] Bayesian weighted composite quantile regression estimation for linear regression models with autoregressive errors
    Aghamohammadi, A.
    Bahmani, M.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (08) : 2888 - 2907
  • [8] OPTIMAL ESTIMATION OF THE PARAMETERS OF REGRESSION-MODELS WITH ERRORS IN THE MEASUREMENT OF THE INDEPENDENT VARIABLES
    AVERBUKH, EA
    KOMISSARCHIK, VF
    [J]. INDUSTRIAL LABORATORY, 1983, 49 (03): : 287 - 291
  • [9] COMPARISON OF ACCURACY OF ESTIMATION OF PARAMETERS OF REGRESSION-MODELS IN THE CASE OF ERRORS IN THE INDEPENDENT VARIABLES
    MATSEVICH, DA
    PETROVICH, ML
    FEDOROV, VV
    [J]. INDUSTRIAL LABORATORY, 1984, 50 (07): : 688 - 694
  • [10] A Bayesian approach for nonlinear regression models with continuous errors
    de la Cruz-Mesia, R
    Marshall, G
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (08) : 1631 - 1646