Voisin-Borcea manifolds and heterotic orbifold models

被引:0
|
作者
W. Buchmuller
J. Louis
J. Schmidt
R. Valandro
机构
[1] Deutsches Elektronen-Synchrotron DESY,II Institute for Theoretical Physics
[2] Hamburg University,Zentrum für Mathematische Physik
[3] Hamburg University,undefined
关键词
Superstrings and Heterotic Strings; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
We study the relation between a heterotic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${T^6 \left/ {{{{\mathbb{Z}}_6}}} \right.}$\end{document} orbifold model and a compactification on a smooth Voisin-Borcea Calabi-Yau three-fold with non-trivial line bundles. This orbifold can be seen as a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\mathbb{Z}}_2}$\end{document} quotient of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${T^4 \left/ {{{{\mathbb{Z}}_3}}} \right.}\times {T^2}$\end{document}. We consider a two-step resolution, whose intermediate step is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left( {K3\times {T^2}} \right){{\mathbb{Z}}_2}$\end{document}. This allows us to identify the massless twisted states which correspond to the geometric Kähler and complex structure moduli. We work out the match of the two models when non-zero expectation values are given to all twisted geometric moduli. We find that even though the orbifold gauge group contains an SO(10) factor, a possible GUT group, the subgroup after higgsing does not even include the standard model gauge group. Moreover, after higgsing, the massless spectrum is non-chiral under the surviving gauge group.
引用
收藏
相关论文
共 50 条